期刊文献+

基于信息熵和残差神经网络的多层次船只目标鉴别方法 被引量:3

Multi-level Ship Target Discrimination Method Based on Entropy and Residual Neural Network
下载PDF
导出
摘要 为剔除船只候选区域中的虚警目标,提出了一种基于信息熵和残差神经网络的多层次虚警鉴别方法。首先,基于船只和虚警图像切片在信息熵上的差异,采用信息熵阈值来去除候选区域中的大部分虚警。为进一步确认船只目标,设计了一种用于图像切片分类的深层残差神经网络模型,并采用网络“微调”的迁移学习策略对图像分类网络模型进行训练,实现对船只目标和虚警的自动分类。实验结果表明,该方法取得了不错的鉴别效果,能有效剔除岛屿、云层、海杂波等虚警,方法简单高效,后续无须进行复杂的鉴别工作。 In order to remove false alarms in the candidate regions of ship target,a multi-level false alarms discrimination method based on entropy and residual neural network is proposed.Firstly,based on the difference in entropy between the image slices of ships and false alarms,the most false alarms in the candidate regions are removed with the threshold of entropy.In order to confirm the ship target,a deep residual neural network model for image slice classification is designed and the transfer learning method called finetuning is adopted to train deep residual neural network,to realize the automatic classifying of the ship and false alarm.Experimental results show that the proposed method achieves a good discrimination effect and achieves effective elimination of false alarms such as islands,clouds and sea clutter.It is simple and efficient,and no complicated identification work is needed in the subsequent process.
作者 刘俊琦 李智 张学阳 LIU Jun-qi;LI Zhi;ZHANG Xue-yang(Graduate School,Space Engineering University,Beijing 101416,China;Space Engineering University,Beijing 101416,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S02期253-257,共5页 Computer Science
基金 航天工程大学青年创新基金(520613)。
关键词 信息熵 残差神经网络 虚警鉴别 迁移学习 Entropy Residual neural network False alarm discrimination Transfer learning
  • 相关文献

参考文献2

二级参考文献9

  • 1李禹,王世晞,计科峰,粟毅.一种新的高分辨率SAR图像目标自动鉴别方法[J].国防科技大学学报,2007,29(3):81-84. 被引量:7
  • 2Corbane C,Najman L,Pecoul E et al.A complete processing chain for ship detection using optical satellite imagery[J].International Journal of Remote Sensing,2010,31(22):5837-5854. 被引量:1
  • 3Bi F K,Liu F,Gao L N.A hierarchical salient-region based algorithm for ship detection in remote sensing images[J].Lecture Notes in Electrical Engineering,2010,67:729-738. 被引量:1
  • 4Li W W.Detection of Ship in Optical Remote Sensing Image of Median-low Resolution[D].Changsha:National University of Defense Technology,2008:19-21. 被引量:1
  • 5Lu C Y,Zou H X,Sun H,et al.Combing rough set and RBF neural network for large-scale ship recognition in optical satellite images[C]//Proceedings of the 35th International Symposium on Remote Sensing of Environment(ISRSE35).IOP Conference Series:Earth and Environmental Science,SCI,2014,17(1). 被引量:1
  • 6Gonzalez R C,Woods R E,Eddins S L.Digital Image Processing Using MATLAB[M].Translated by Ruan Q Q.Beijing:Publishing House of Electronics Industry,2005:315-319. 被引量:1
  • 7Delphine C M.Ship detection with spaceborne multichannel SAR/GMTI radars[C]//Proceedings of 9th European Conference on Synthetic Aperture Radar.Piscataway,NJ,USA;IEEE,2012:400-403. 被引量:1
  • 8Gao G.An improved scheme for target discrimination in high-resolution SAR images[J].IEEE Transaction on Geosciences and Remote Sensing,2011,49(1):277-294. 被引量:1
  • 9Dardas N H,Georganas N D.Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J].IEEE Transactions on Instrumentation and Measurement,2011,60(11):3592-3607. 被引量:1

共引文献2

同被引文献27

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部