期刊文献+

基于分层特征描述的舰船目标鉴别 被引量:1

Ship target discrimination based on hierarchical feature description
下载PDF
导出
摘要 针对当前一些目标鉴别方法无法兼顾目标的可分性和方法的有效性,同时又能减少计算的复杂度等要求,提出了一种基于分层特征描述的鉴别方法。首先,提取目标的简单形状或几何特征,利用加权投票法初步筛选并去除大量易识别的虚警;然后对筛选的候选目标提取更为复杂的鉴别特征,利用特征分离法选择最优特征组合,并采用支持向量机方法进行二次鉴别,进一步去除虚警,得到真实目标。实验结果表明,该方法对目标的整体检测效果较好,具有较高的可区分性和可鉴别性;能有效减少计算的复杂度,同时又能在一定程度上减少外界因素的影响,有效地去除虚警、保留目标,其耗时仅为常用方法的1/3。 In view of the problem that current methods cannot reach a good balance between capability of discrimination,utility and computational complexity,the authors have proposed in this paper an algorithm based on hierarchical feature description. Firstly,simple shape or geometrical features are extracted to get rid of large numbers of false- alarm targets based on weighted voting. Secondly,complex discrimination features are selected to form the optimal feature set by feature separation. And then the feature set is used to support vector machine to get the real ship target. Experimental results show that the proposed algorithm in this paper,which extracts hierarchical features to certain regions identified,can effectively eliminate false alarms,reduce the amount of computation,and improve accuracy and efficiency of discrimination,and can also reduce the influence of external factors,remove false alarm and reserve the targets effectively,with time spending being only 1 /3 of the common method.
出处 《国土资源遥感》 CSCD 北大核心 2016年第2期28-33,共6页 Remote Sensing for Land & Resources
基金 全军军事类研究生课题(编号:2013JY514)资助
关键词 舰船目标鉴别 简单特征 复杂特征 分层描述 ship target discrimination simple feature complex feature hierarchical description
  • 相关文献

参考文献11

  • 1Corbane C,Najman L,Pecoul E et al.A complete processing chain for ship detection using optical satellite imagery[J].International Journal of Remote Sensing,2010,31(22):5837-5854. 被引量:1
  • 2Bi F K,Liu F,Gao L N.A hierarchical salient-region based algorithm for ship detection in remote sensing images[J].Lecture Notes in Electrical Engineering,2010,67:729-738. 被引量:1
  • 3Li W W.Detection of Ship in Optical Remote Sensing Image of Median-low Resolution[D].Changsha:National University of Defense Technology,2008:19-21. 被引量:1
  • 4Lu C Y,Zou H X,Sun H,et al.Combing rough set and RBF neural network for large-scale ship recognition in optical satellite images[C]//Proceedings of the 35th International Symposium on Remote Sensing of Environment(ISRSE35).IOP Conference Series:Earth and Environmental Science,SCI,2014,17(1). 被引量:1
  • 5李禹,王世晞,计科峰,粟毅.一种新的高分辨率SAR图像目标自动鉴别方法[J].国防科技大学学报,2007,29(3):81-84. 被引量:7
  • 6Gonzalez R C,Woods R E,Eddins S L.Digital Image Processing Using MATLAB[M].Translated by Ruan Q Q.Beijing:Publishing House of Electronics Industry,2005:315-319. 被引量:1
  • 7刘凯..基于分形几何理论的虹膜识别算法研究[D].山东大学,2011:
  • 8许军毅..光学卫星遥感图像舰船目标检测技术研究[D].国防科学技术大学,2011:
  • 9Delphine C M.Ship detection with spaceborne multichannel SAR/GMTI radars[C]//Proceedings of 9th European Conference on Synthetic Aperture Radar.Piscataway,NJ,USA;IEEE,2012:400-403. 被引量:1
  • 10Gao G.An improved scheme for target discrimination in high-resolution SAR images[J].IEEE Transaction on Geosciences and Remote Sensing,2011,49(1):277-294. 被引量:1

二级参考文献4

  • 1Principe J C,Radisavljevic A,Fisher J,et al.Target Prescreening Based on a Quadratic Gamma Discriminator[J].IEEE Trans.on Aerospace and Electromic Systems,1998,34(3):706-715. 被引量:1
  • 2Prindpe J C,Kim M,Fisher J W.Target Discrimination in Synthetic Aperture Radar Using Artificial Neural Networks[J].IEEE Trans.on Image Processing,1998,7(8):1136-1149. 被引量:1
  • 3Novak L M,Halversen S D,Owirka G J,et al.Effects of Polarization and Resolution on SAR ATR[J].IEEE Trans.on Aerospace and Electronic Systems,1997,33:102-116. 被引量:1
  • 4Oliver C,Quegan S.Understanding Synthetic Aperture Radar Images[M].Artech House,Boston,London,1998. 被引量:1

共引文献6

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部