期刊文献+

规划阶段建筑冷热负荷预测与特性分析 被引量:4

Prediction and characteristics analysis of building heating and cooling loads at planning phase
下载PDF
导出
摘要 为解决区域建筑能源规划阶段因单体建筑参数不确定带来的冷热负荷预测问题,提出基于拉丁超立方抽样的蒙特卡罗模拟方法,其过程为:首先,确定不确定参数及分布;然后,通过R语言编程对不确定参数抽样并自动生成模型;最后,导入EnergyPlus软件进行负荷计算。以天津某规划用地为例,采用所提出的方法对2000组抽样的建筑冷热负荷进行预测,并对预测结果进行不确定和敏感性分析。研究结果表明:基于拉丁超立方抽样的蒙特卡罗模拟方法实现了抽样的快速收敛和模型的快速生成,可以有效计算区域建筑峰值冷热负荷的频数分布、累积概率和特征值;模型中,太阳得热系数、外窗传热系数、建筑层数、建筑底面长宽比、南向窗墙比和北向窗墙比对冷热负荷影响显著。 In order to solve the problem of heating and cooling loads prediction caused by the uncertainty of single building parameters in regional building energy planning, a Monte Carlo simulation method based on Latin hypercube sampling was proposed. Firstly, the uncertain parameters and their distribution were determined, then the uncertain parameters were sampled by Latin hypercube sampling and models were generated automatically by R programming language. Finally, these models were imported into the EnergyPlus software to calculate the cooling and heating load. Meanwhile, taking a planning land in Tianjin as an example, 2 000 groups of samples were taken and predicted by the proposed method, and the uncertainty and sensitivity of the results were analyzed.The results show that the Monte Carlo simulation method based on Latin hypercube sampling realizes the fast convergence of sampling and the fast generation of model. The frequency distribution,cumulative probability and eigenvalue of peak cooling and heating load of regional buildings can be effectively calculated by this method. Six parameters of the model, including solar heat gain coefficient, external window heat transfer coefficient, number of floors, building aspect ratio, south window to wall ratio, and north window to wall ratio, have significant influence on the building cooling and heating loads.
作者 朱丽 张吉强 王飞雪 孙勇 田玮 朱传琪 ZHU Li;ZHANG Jiqiang;WANG Feixue;SUN Yong;TIAN Wei;ZHU Chuanqi(School of Architecture,Tianjin University,Tianjin 300072,China;APEC Sustainable Energy Center,Tianjin University,Tianjin 300072,China;College of Mechanical Engineering,Tianjin University of Science and Technology,Tianjin 300222,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第10期2969-2977,共9页 Journal of Central South University:Science and Technology
基金 国家重点研发计划项目(2018YFC0704400)。
关键词 冷热负荷预测 蒙特卡罗模拟 拉丁超立方抽样 不确定分析 敏感性分析 heating and cooling loads prediction Monte Carlo simulation Latin hypercube sampling uncertainty analysis sensitivity analysis
  • 相关文献

参考文献4

二级参考文献22

  • 1Bernstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409(6818): 363-366. 被引量:2
  • 2JGJ75-2012,夏热冬暖地区居住建筑节能设计标准[S]. 被引量:7
  • 3GB50189-2005.公共建筑节能设计标准[S].中国建筑科学研究院,2012. 被引量:51
  • 4Kavgic M, Mumovic D, Summerfield A, et al. Uncertainty and modeling energy consumption: Sensitivity analysis for a city-scale domestic energy model[J]. Energy and Buildings, 2013, 60: 1-11. 被引量:1
  • 5Ben-Nakhi A, Mahmoud M A. Cooling load prediction for buildings using general regression neural networks[J]. Energy Conversion and Management, 2004, 45(13/14): 2127-2141. 被引量:1
  • 6Papalexopoulos A D, Hao S Y, Peng T M. An implementation of a neural network based load forecasting model for the EMS[J]. IEEE Transactions on Power Systems, 1994, 9(4): 1956-1962. 被引量:1
  • 7Pagliarini Cg Rainieri S. Restoration of the building hourly space heating and cooling loads from the monthly energy consumption[J]. Energy and Buildings, 2012, 49: 348-355. 被引量:1
  • 8LI Qiong, MENG Qinglin, CAI Jiejin, et al. Applying support vector machine to predict hourly cooling load in the building[J]. Applied Energy, 2009, 86(10): 2249-2256. 被引量:1
  • 9Lee Y S, Tong L I. Forecasting energy consumption using a greymodel improved by incorporating genetic programming[J]. Energy Conversion and Management, 2011, 52(1): 147-152. 被引量:1
  • 10YAO Ye, LIAN Zhiwei, LIU Shiqing, et al. Hourly cooling load prediction by a combined forecasting model based on analytic hierarchy process[J]. International Journal of Thermal Sciences, 2004, 43(11): 1107-1118. 被引量:1

共引文献27

同被引文献35

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部