摘要
Magnesium titanate was prepared directly through external coal reduction of seashore titanomagnetite concentrate and magnesium oxide(MgO).The effects of roasting temperature and the type and dosage of reductants on the purity of generated magnesium titanate particles were systematically investigated.Scanning electron microscopy and energy-dispersive spectroscopy analyses were performed to characterize the magnesium titanate particles and observe their purity under different conditions.Results showed that the roasting temperature remarkably influenced the purity of magnesium titanate.At 1200,1300,and 1400℃,some magnesium ferrite and magnesium aluminate spinel were dissolved in magnesium titanate.However,as the roasting temperature increased to 1500℃,relatively pure magnesium titanate particles were generated because no magnesium ferrite was dissolved in them.The type and dosage of the reductants also remarkably affected the purity of magnesium titanate.The amount of fine metallic iron disseminated in the magnesium titanate particles obviously decreased when lignite was used as a reductant at a dosage of 70wt%.Thus,high-purity magnesium titanate particles formed.At a roasting temperature of 1500℃and with 70wt%lignite,the magnesium titanate product with a yield of 30.63%and an iron content of 3.01wt%was obtained through magnetic separation.
基金
This work was financially supported by the National Natural Science Foundation of China(Nos.51874017 and 51674018)
the Inner Mongolia University of Science and Technology Innovation Fund(No.2019QDL-B28).