期刊文献+

用于航班延误预测的集成式增量学习算法 被引量:5

Ensemble of Incremental Learning Algorithm for Flight Delay Prediction
下载PDF
导出
摘要 为持续高效地学习不断产生的航班运行信息,提高航班延误预测模型学习新到达数据的效率,采用集成学习思想,提出了一种基于分类与回归树(classification and regression tree,CART)的增量学习算法.首先,将CART算法与Learn++算法结合实现了增量分类与回归树(incremental classification and regression tree,I-CART)算法;然后,进一步分析了基分类器间的区别和与精确度的关系,使用选择性集成算法来提高I-CART算法预测速率;最后,将该算法应用到航班延误预测中,增量地学习航班动态运行信息.实验结果表明,该算法有效地提高了模型预测效果. To continuously and efficiently learn the constantly generated flight information and improve the efficiency of flight delay prediction model to learn new arrival data,an incremental learning algorithm based on classification and regression tree(CART)was proposed by using ensemble learning ideas.First,incremental classification and regression tree(I-CART)incremental learning algorithms were implemented by combining CART algorithm with Learn++algorithm.Then,based on the relationship between the difference and accuracy of basic classifiers,and the prediction rate of I-CART algorithm was improved by using the selective ensemble algorithm proposed in this paper.Finally,the incremental learning algorithm was applied to flight delay prediction.Results show that the incremental learning algorithm of flight dynamic information effectively improves the prediction performance of the model.
作者 王丹 王萌 王晓曦 杨萍 WANG Dan;WANG Meng;WANG Xiaoxi;YANG Ping(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;State Grid Management Institute,Beijing 102200,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2020年第11期1239-1245,共7页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61672505)。
关键词 航班延误 分类与回归树(CART)算法 增量学习 集成学习 选择性集成 机器学习 flight delay classification and regression tree(CART)algorithm incremental learning ensemble learning selective ensemble machine learning
  • 相关文献

参考文献8

二级参考文献41

  • 1曹卫东,贺国光.连续航班延误与波及的贝叶斯网络分析[J].计算机应用,2009,29(2):606-610. 被引量:25
  • 2李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598. 被引量:24
  • 3耿新,周志华.Image Region Selection and Ensemble for Face Recognition[J].Journal of Computer Science & Technology,2006,21(1):116-125. 被引量:6
  • 4Ball M, Barnhart C. Total delay impact study: a comprehensive as- sessment of the costs and impacts of flight delay in the United States. The National Center of Excellence For Aviation Operations Research, 2010,10. 被引量:1
  • 5Donohue G, 'Laskey K B. Estimation of delay propation in the nation- al aviation system using bayesian networks. 6h USA/Europe Air Traf- fic Management Research and Development Seminar,2005, 06. 被引量:1
  • 6Xu Ning. Chen Chun Hung. Bayesian network analysis of flight De- lays. TRB 2007 Annual Meeting CD-ROM. 被引量:1
  • 7关于印发《民航航班正常统计办法》的通知.中国民用航空总局,2003. 被引量:1
  • 8刘玉沽.基于贝叶斯网络的航班延误与波及预测.天津:天津大学学位论文,2009. 被引量:1
  • 9WANG M Y, CAO C X, LI G S, et al. Analysis of a Severe Pro- longed Regional Haze Episode in the Yangtze River Delta, China. Atmo-spherie Environment, 2015, 102 : 112-121. 被引量:1
  • 10XIAO Z M, ZHANG Y F, HONG S M, et al. Estimation of the Main Factors Influencing Haze Based on a Long-Term Monitoring Cam- paign in Hangzhou, China. Aerosol and Air Quality Research, 2011, 11(7) : 873-882. 被引量:1

共引文献78

同被引文献40

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部