期刊文献+

基于支持向量机回归的机场航班延误预测 被引量:13

Airport flight delay prediction based on SVM regression
下载PDF
导出
摘要 航班延误情况的预测对于繁忙机场意义重大。针对繁忙机场的进离港延误航班数量和延误时间难以预测的问题,采用支持向量机回归方法建立航班进离港延误预测模型。首先根据已有的航班运营数据,利用向后逐步选择算法,分别挖掘出与机场单位小时进离港延误航班数和总延误时间最为相关的因素,并将其作为预测变量来预测延误水平。其次,利用Grid-Search和交叉检验法选择最优的模型参数。最后,使用洛杉矶机场与浦东机场航班起降数据来训练模型,并将真实数据集作为输入变量分别用于多元线性回归模型和支持向量机回归模型,比较航班延误预测效果。结果表明:支持向量机回归模型能够很好预测航班延误的趋势,较为准确地预测航班延误。 Flight delay prediction is significant for busy airports. Aiming at the difficuhy of predicting the number and duration of delays in busy airport flights, SVM(support vector machine) regression method is used to establish the flight arrival/departure delay prediction model. First of all, according to the flight operating data, data mining and backward stepwise selection algorithm are used to determine the most relevant factors of number and duration of delay per hour respectively. Secondly, grid-search and cross-check methods are used to select the optimal model parameters. Finally, historical data of LAX(Los Angeles International Airport) and PVG(Pudong International Airport) are used to train the model, and multivariate linear regression model and SVM regression model are applied to test the current model. Comparison results show that the SVM regression model can achieve better prediction effect.
出处 《中国民航大学学报》 CAS 2018年第1期30-36,41,共8页 Journal of Civil Aviation University of China
基金 国家自然科学基金项目(71201081) 南京航空航天大学研究生创新实验竞赛培育项目
关键词 航班延误 支持向量机回归 向后逐步选择 flight delay SVM regression backward stepwise selection
  • 相关文献

参考文献10

二级参考文献63

  • 1曹卫东,贺国光.连续航班延误与波及的贝叶斯网络分析[J].计算机应用,2009,29(2):606-610. 被引量:25
  • 2王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 3Nilim A, Ghaoui L E, DuongV, et al. Trajectory_based air traffic management (tb_arm) under weather uncertainty[C]//Proc of the Fourth International Air Traffic Management R&.D Seminar ATM. 2001. 被引量:1
  • 4Hansen M. Post_ deployment analysis of capacity and delay impacts of an airport enhancement[J]. Air Traffic Control Quarterly Abstracts. 2004,12 (4) : 2-4. 被引量:1
  • 5Pearl J. Fusion propagation and structuring in belief networks[J]. Artificial Intelligence,1986,29(3) :241-288. 被引量:1
  • 6Pearl J. On evidence reasoning in a hierarchy of hypothesis [J]. Artificial Intelligence, 1986,28(3) : 151-172. 被引量:1
  • 7Roger B, Lee B,James R. Preliminary evaluation of flight delay propagation through an airline-schedule[R~. The 2rd USA/Europe Air Traffic Management R&D Seminar. Orlando, USA, 2000. 被引量:1
  • 8Lauritzen S L. The EM algorithm for graphical association models with missing data[J]. Computational Statistics and Data Analysis,1995,19(2):191- 201. 被引量:1
  • 9Spiegelhalter D J , Lauritzen S L. Sequential updating of conditional probabilities on directed graphical structures [J]. Networks,1990,20(5) :579-605. 被引量:1
  • 10Netica Tutorial. http://www. norsys. com/tutorials/netica[CP/OL]. 2005. 被引量:1

共引文献212

同被引文献98

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部