摘要
考虑到最小熵反褶积(minimum entropy deconvolution, MED)只对单一的异常振动信号很敏感,而且,滤波器的长度需要人工调控,提出了一种最大峭度熵反褶积(maximum kurtosis entropy deconvolution, MKSED)方法,并将其应用于轴承故障诊断。考虑峭度熵具有突出连续冲击振荡的优点,选择峭度熵作为反褶积的目标函数。同时,利用峭度熵作为改进的局部粒子群优化算法(local particle swarm optimization algorithm, LPSO)的适应度函数,利用局部粒子群优化滤波器长度,使最大峭度熵反褶积在解卷积时自适应地调整滤波器长度,从而能够准确地提取出连续的脉冲信号。实验分析结果验证了该方法能够更叫有效的提取连续脉冲信号的能力,提升了故障诊断的精度。
Considering that the minimum entropy deconvolution is only sensitive to a single abnormal vibration signal,and the length of the filter needs to be adjusted manually,a maximum kurtosis entropy deconvolution method was proposed and applied to bearing fault diagnosis.Considering that kurtosis entropy has the advantage of continuous shock oscillation,kurtosis entropy was chosen as the objective function of deconvolution.At the same time,kurtosis entropy was used as the fitness function of the improved local particle swarm optimization algorithm,and LPSO was used to optimize the filter length,so that MKSED can adaptively adjust the filter length when deconvolution,so as to accurately extract the continuous pulse signal.The experimental results show that the method can extract continuous pulse signal more effectively and improve the accuracy of fault diagnosis.
作者
鹿洪荣
隋文涛
LU Hong-rong;SUI Wen-tao(Department of Mechanical Engineering,Shandong Plytechnic,Jinan 250104,China;College of Mechanical Engineering,Shandong University of Technology,Zibo Shandong 255013,China)
出处
《组合机床与自动化加工技术》
北大核心
2020年第10期117-121,共5页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金(51705296)。
关键词
齿轮箱
粒子群优化算法
最大峭度熵反褶积
信号提取
故障诊断
gearbox
particle swarm optimization algorithm
maximum kurtosis entropy deconvolution
signal extraction
fault diagnosis