摘要
针对边缘计算环境中,边缘端设备存储资源有限,难以满足大量用户缓存需求问题,探讨高效的数据缓存策略。提出了一种数据分层协同缓存策略,该策略将边缘端分为用户设备层和边缘服务器层,用户设备层之间共享缓存资源。基于用户移动性,同时结合数据块兴趣度和获取概率,计算每个数据块在用户设备和边缘服务器中的缓存价值。根据待缓存数据块的缓存价值进行缓存决策,并通过博弈论求解所提出的缓存问题。仿真实验结果表明,提出的缓存策略相比现有策略命中率提高了16.58%。
In edge computing environment,limited storage resources of edge-side devices fail to meet the needs of a large number of users.Therefore,a data hierarchical cooperative caching strategy is proposed,in which the edge end is divided into user device layer and edge server layer,and cache resources between user device layers are shared.Based on user mobility,the cache value of each data block in user devices and edge servers is calculated by combining data block interest and acquisition probability.According to the cache value of the data blocks to be cached,the caching problem is solved by game theory.Simulation results show that the proposed cache strategy increases the hit ratio of the existing strategy by 16.58%.
作者
王朝
高岭
高全力
WANG Chao;GAO Ling;GAO Quanli(School of Computer Science,Xi’an Polytechnic University,Xi’an 710048,China)
出处
《纺织高校基础科学学报》
CAS
2020年第3期106-112,共7页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金(61672426,61902300)
陕西省自然科学基金(2019JQ-850)
陕西省教育厅重点科学研究计划(18JX006)
西安工程大学自主创新基金(chx2019053)。
关键词
边缘计算
数据缓存
博弈论
分层协同
缓存价值
edge computing
data cache
game theory
hierarchical cooperative
cache value