期刊文献+

基于改进EWT-SVD的轴承故障特征提取 被引量:1

Research on Bearing Fault Feature Extraction Based on Improved EWT-SVD
下载PDF
导出
摘要 文章针对轴承早期故障特征的提取,提出了基于改进EWT-SVD的算法。首先,改进的经验小波(EWT)提出了模态分解数量确定的思路,自适应地将预处理信号分解到合适数量的模态分量,通过相关度系数验证了分解模态的信号有效性;其次,通过计算各分量的峭度值确定最优的特征提取模态分量,并通过变阈值奇异值分解(SVD)对模态信号进行去噪;最后,通过对重构特征信号进行Hilbert变换包络处理提取振动信号频率特征。实验证明了文章算法的可行性,同时,算法还具有计算速度快、以数据为主要驱动的特点。 An improved EWT-SVD algorithm is proposed to extract the early fault features of bearings in the thesis. Firstly, the IEWT algorithm proposed the method of calculating the number of decomposition modal, which adaptively decomposes the preprocessed signal to the appropriate components number, and verified the validity by the relevancy coefficient. Secondly, the optimal component is determined by the kurtosis, and the modal signal is denoised by SVD with variable threshold method. After that, the frequency feature of the reconstructed signal is extracted by the Hilbert transform envelope processing. Finally, the feasibility of the algorithm is proved by experiments. And, the algorithm has the characteristics of fast computing speed and mainly data-driven.
作者 车守全 包从望 江伟 陈俊 肖钦兰 CHE Shou-quan;BAO Cong-wang;JIANG Wei;CHEN Jun;XIAO Qin-lan(School of Mines and Civil Engineering,Liupanshui Normal University,Liupanshui Guizhou 553000,China)
出处 《组合机床与自动化加工技术》 北大核心 2020年第9期80-83,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 贵州省矿山装备数字化技术工程研究中心(黔教合KY字[2017]026号) 六盘水市科研创新平台和人才团队建设(52020-2019-5-12)。
关键词 故障特征 改进EWT SVD HILBERT变换 fault features improved EWT SVD Hilbert transform
  • 相关文献

参考文献10

二级参考文献92

  • 1周伟.新疆风力资源分布状况及风力发电前景展望[J].新疆农机化,2007(1):61-62. 被引量:9
  • 2丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(1):13-20. 被引量:42
  • 3彭文季,罗兴锜,郭鹏程.基于第2代小波的水电机组振动信号预处理[J].中国电机工程学报,2007,27(30):103-107. 被引量:18
  • 4FENG ZH P, ZUO M J. Vibration signal models for fauh diagnosis of planetary gearboxes [ J ]. Journal of Sound and Vibration, 2012, 331(22): 4919-4939. 被引量:1
  • 5TENG W, WANG F, ZHANG K, et al. Pitting fault detection of a wind turbine gearbox using empirical mode decomposition [ J ]. Strojnikivestnik-Joumal of Mechanical Engineering, 2014, 60( 1 ) : 12-20. 被引量:1
  • 6李少华,赵明浩,陈杰,等.小波变换在风力机齿轮箱故障特征提取中的应用[C].第十二届全国设备故障诊断学术会议,2010. 被引量:1
  • 7LIU W Y, ZHANG W H, HAN J G, et al. A new wind turbine fault diagnosis method based on the local mean decomposition[ J ]. Renewable Energy, 2012, 48 ( 6 ) : 411-415. 被引量:1
  • 8GILLES J. Empirical wavelet transform [ J ]. IEEE transactions on signal processing, 2013, 61 (16): 3999-4010. 被引量:1
  • 9LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses [ J ]. Bulletin of the Seismological Society of America, 2001, 91(5) : 1339-1357. 被引量:1
  • 10GILLES J, TRAN G, OSHER S. 2D empirical transforms. Wavelets, ridgelets, and curveletsrevisited [ J ]. SIAM Journal on Imaging Sciences, 2014, 7 ( 1 ) : 157-186. 被引量:1

共引文献148

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部