摘要
为保障目标位置对急用轻质物资的需求,提出并设计一种针对目标区域执行远距离精准投射任务的载具机构。飞行载具需要管径类机构进行发射,除了外部轮廓符合空气动力要求外,还要求载具飞行过程中,在扇叶的驱动下能够展开承载叶。基于此,对利用风能产生扭矩推动展开的可变结构载具进行了研究。利用动量-叶素理论(BEM),对被动式扇叶通过传动链推动承载叶及轻质载荷展开所需的驱动力矩进行了理论计算,得出来流风速、丝杠转速以及丝杠扭矩之间的因变关系,即丝杠扭矩随来流风速及丝杠转速增加而增大;运用Flow Simulation,得到在来流风速为100 m/s条件下,完全展开所提供的扭矩准稳态值为1.097 N·m,气动仿真与理论计算结果较好吻合,为所设计的载具提供一定的研究基础。
In order to meet the requirement of the target location for the urgent need of light materials,a kind of vehicle mechanism is proposed and designed for the long-distance precise projection task to the target area.The diameter type mechanism is required to launch,and its external contour meets the aerodynamic requirements.The vehicle is required to be able to deploy the load-bearing blades under the driving of the blades during the flight.Based on this,the wind energy can be utilized for a variable structure vehicle with torque driven deployment is studied.Based on the momentum element theory(BEM),the theoretical calculation of the driving torque for the blade to push the light load through the transmission chain is carried out.The relationship between the flow rate,the speed of the lead screw and the torque of the lead screw is obtained.The torque of the lead screw increases with the increase of the inflow speed and the speed of the lead screw.By using the flow simulation module,the torque steady-state value provided by the full opening is 1.097 N·m under the condition of the inflow velocity of 100 m/s.The fluid simulations are in good agreement with the theoretical calculations,which provides a certain research basis for the designed vehicle.
作者
刘杰
卞新宇
倪寿勇
王志鹏
LIU Jie;BIAN Xin-yu;NI Shou-yong;WANG Zhi-peng(College of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing, Jiangsu 210023;College of Mechanical Electronical and Engineering, Guilin University of Electronic Science and Technology, Guilin, Guangxi 541004)
出处
《液压与气动》
北大核心
2020年第10期107-112,共6页
Chinese Hydraulics & Pneumatics
基金
广西科技基地和人才专项(2018AD19078)
江苏省高等学校自然科学研究项目(17KJB460007)。
关键词
扇叶
叶素理论
载具
气动仿真
扭矩
fan blade
blade element theory
vehicle
fluid simulation
torque