期刊文献+

基于生成模型的图像风格迁移设计与实现 被引量:2

Design and Implementation of Image Style Transfer Based on Generative Model
下载PDF
导出
摘要 图像风格迁移技术在社交网络、影视娱乐、辅助创作等方面具有广阔的应用前景.本文设计和实现了基于生成模型的图像风格迁移系统,该系统由一个风格迁移图像自动生成器和一个图像风格迁移质量自动评判器组成.风格迁移图像自动生成器采用深度残差网络实现,通过优化内容损失、风格损失和全变差损失实现高精度图像风格迁移;图像风格迁移质量自动评判器采用VGG19深度神经网络预训练模型实现.实验结果表明,该系统不仅最大程度保留原始图像内容,而且高效完成高精度风格迁移. Image style transfer technology has broad application prospects in social network,studio entertainment,auxiliary creation and so on.The implementation of image style transfer system based on generative model was discussed.The system consists of an automatic image generator and an automatic quality evaluator.The automatic image generator was realized by deep residual network,optimizing content loss,style loss and total variation loss for high precision;the quality automatic evaluator was implemented by VGG19 deep neural network pre-trained model.The experimental results show that,on the whole,the network has significant effect on retaining the original image content and style transferring.
作者 杨勃 周亦诚 YANG Bo;ZHOU Yicheng(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414006,China;College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 211800,China)
出处 《湖南理工学院学报(自然科学版)》 CAS 2020年第3期21-26,共6页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 南京邮电大学大学生创新训练计划项目(教发[2019]28号)。
关键词 图像风格迁移 生成模型 生成网络 VGG网络 image style transfer generative model generative network VGG networks
  • 相关文献

参考文献6

二级参考文献53

  • 1张海嵩,尹小勤,于金辉.实时绘制3D中国画效果[J].计算机辅助设计与图形学学报,2004,16(11):1485-1489. 被引量:17
  • 2钱小燕,肖亮,吴慧中.快速风格迁移[J].计算机工程,2006,32(21):15-17. 被引量:15
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288. 被引量:1

共引文献669

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部