期刊文献+

基于工地场景的深度学习目标跟踪算法 被引量:2

Deep Learning Target Tracking Algorithm Based on Construction Site Scene
下载PDF
导出
摘要 针对施工现场环境复杂,难以高效管理的问题.提出了基于工地场景的深度学习目标跟踪算法,辅助施工顺利进行.根据工地现场目标的连续性,构建增强群跟踪器,提升目标成功跟踪的概率.然后从滑动窗口、Stacked Denoising Auto Encoder(SDAE)和Support Vector Machine(SVM)三方面组建深度检测器.在滑动窗口方面:从梯度角度建立模型实现窗口自适应.在SDAE算法方面:构建反向算法微调网络参数.优化SVM算法降低跟踪时目标漂移和跟踪失败的概率,最终实现目标高精度跟踪.通过实验表明本文提出的算法可有效对目标进行跟踪,实现动态管理. Construction site is difficult to be effectively managed owing to its complex environment.A deep learning target tracking algorithm based on construction site scene is proposed to assist the construction progress.Firstly,according to the continuity of the target in the site scene,the enhanced group tracker is constructed to improve the successful probability of target tracking.Then,the depth detector is constructed with sliding window,stacked denoising auto encoder(SDAE)and support vector machine(SVM).Sliding window:a model is built from the gradient angle to realize window adaption.SDAE algorithm:the reverse algorithm is built to fine-tune network parameters.Optimized SVM algorithm reduces the probability of target drift and tracking failure.Finally,high precision tracking is achieved.Experiments show that the proposed algorithm can track the target effectively and realize dynamic management.
作者 马少雄 邱实 唐颖 张晓 MA Shao-xiong;QIU Shi;TANG Ying;ZHANG Xiao(Xi’an University of Technology,Xi’an,Shaanxi 710048,China;Shaanxi Railway Institute,Weinan,Shaanxi 714000,China;Key Laboratory of Spectral Imaging Technology CAS,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an,Shaanxi 710119,China;Chengdu University of Technology,Chengdu,Sichuan 610059,China;Northwest University,Xi’an,Shaanxi 710127,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2020年第9期1665-1671,共7页 Acta Electronica Sinica
基金 中国科学院“西部之光”项目(No.XAB2016B23)。
关键词 工地场景 深度学习 目标跟踪 增强群滤波器 SDAE SVM site scene deep learning target detecting the enhanced group filter SDAE SVM
  • 相关文献

参考文献3

二级参考文献32

  • 1夏候凯顺,陈善星,邬依林.基于双目云台相机的目标跟踪系统建模与仿真[J].系统仿真学报,2015,27(2):362-368. 被引量:6
  • 2沈红斌,杨杰,王士同,陈宁江.采样定理、视觉原理及无监督聚类分析理论[J].上海交通大学学报,2005,39(4):544-548. 被引量:3
  • 3Wu Y, Lim J: and Yang M H. Online object tracking: A benchmark[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013:2411-2:118. 被引量:1
  • 4Ross D A, Lirn J, Lin R S, et al: Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 7T(3): 125-141. 被引量:1
  • 5Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. 被引量:1
  • 6He S F, Yang Q X, Rynson L, et al: Visual Tracking via Locality Sensitive Histograms[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2427-2434. 被引量:1
  • 7Grabner H, Grabner M, and Bischof H. Real-time tracking via online boosting[C]. Proceedings of British Machine Vision Conference, Edinburgh, UK, 2006: 47-56. 被引量:1
  • 8Grabner H, Leistner C, and Bischof H. Semi-supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany, 2008: 234-247. 被引量:1
  • 9Kalal Z, Matas J, and Mikolajczyk K. P-N learning: bootstrapping binary classifiers by structural constraints[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2010:49 56. 被引量:1
  • 10Tomas V and Jiri M. Robustifying the flock of trackers[C]. Proceedings of Computer Vision Winter Workshop, Graz: Austra: 2011:91 97. 被引量:1

共引文献9

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部