期刊文献+

循环流化床制冰系统用喷嘴的数值模拟研究 被引量:1

Numerical Simulation of Nozzle used Incirculating Fluidized Bed Type Ice Slurry Generator
下载PDF
导出
摘要 喷嘴是提高循环流化床制冰器循环动力的关键部件。采用计算流体力学方法,模拟研究了喷嘴出口位置、口径比对水平管段内流体速度、压力、湍动能分布的影响。结果表明,喷嘴出口位置是影响卷吸竖管中流体的重要因素。当喷嘴出口位置为0 mm时,流体在流出喷嘴出口以后速度减小的趋势最慢,射流区域产生的漩涡影响距离较长,同时喷嘴出口射流中心区域较长,有利于流体的循环。当喷嘴口径比为0.3时,喷嘴的阻力较小,压降变化幅度变小,更有利于流体的流动循环。 Nozzle is the key component to improve the circulation power of the circulating fluidized bed ice slurry generator.In this article,the computational fluid dynamics method was used to simulate the effects of nozzle exit position and diameter ratio on the fluid velocity,pressure and turbulent kinetic energy in the horizontal pipe section.The simulation results showed that the nozzle exit position is a significant factor affecting the entrainment of fluid in the vertical pipe.When the nozzle exit position was 0 mm,the fluid velocity decreased the slowest after flowing out of the nozzle exit,the vortex generated by the jet region has a longer influence distance,and the center jet zone of the nozzle exit was longer,which was beneficial to the fluid circulation.When the diameter ratio was 0.3,the resistance of the nozzle was small,and the variation of the pressure drop became smaller,which was more conducive to the flow circulation.
作者 王鑫 孙靖 韩克鑫 谢春刚 邢玉雷 WANG Xin;SUN Jing;HAN Ke-xin;XIE Chun-gang;XING Yu-lei(The Institute of Seawater Desalination and Multipurpose Utilization,MNR(Tianjin),Tianjin 300192,China;Tianjin Haiyue Water Treatment High-Tech Co.Ltd.,Tianjin 300192,China)
出处 《盐科学与化工》 CAS 2020年第8期19-24,共6页 Journal of Salt Science and Chemical Industry
基金 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2016-T03,K-JBYWF-2017-G1) 天津市技术创新引导专项(基金)——“一带一路”技术合作研发及产业化项目(18YDYGHZ00100)。
关键词 喷嘴 口径比 喷嘴出口位置 循环流化床制冰器 计算流体力学 Nozzle Diameter ratio Nozzle exit position Circulating fluidized bed ice slurry generator Computational fluid dynamics
  • 相关文献

参考文献3

二级参考文献22

  • 1齐世学,宗祥荣,王琳,徐应铨.流化床换热器的研究(Ⅰ)[J].烟台大学学报(自然科学与工程版),1994,7(1):48-54. 被引量:7
  • 2潘国昌,郭庆丰,杨伯极.填料塔进料气体分布器的研究[J].炼油设计,1995,25(2):28-32. 被引量:21
  • 3周兰欣,邱春花.喷射式加热器结构设计计算与分析[J].节能,2006,25(8):20-21. 被引量:3
  • 4刘吉普,吴金香.管程内循环液固流态化强化换热技术研究[J].湘潭大学自然科学学报,1996,18(3):79-84. 被引量:10
  • 5Taborek J. Heat Exchanger: Theory and Practice[ M ]. Washington: Hemisphere publishing Corporation, 1981. 885--896. 被引量:1
  • 6Kollbach J St, Dahm W, Rautenbach R. Continuous cleaning of heat exchanger with reeireulating fluidized bed [J]. Heat Transfer Engineering, 1987, 8 (4):26 --34. 被引量:1
  • 7Raubentach R, Erdmann C, Kollbach J St. The fluidized bed technique in the evaporation of wastewaterswith severe fouling/scaling potential-lasted developments, applications limitations [ J ]. Desalization,1991, 81 (2) : 285--298. 被引量:1
  • 8Zhang L B, Li X L. A study on boiling heat transfer in three-phase circulating fluidized bed [ J ]. Chemical Engineering Journal, 2000, 78 ( 1 ) : 217--223. 被引量:1
  • 9Klaren D G, Bailie R E. The non-fouling fluidized bed heat exchanger [ A ]. Heat Transfer Equipment Fundamentals, Design, Application and Operating Problems[ C ]. New York : American Society of Mechanical Engineer, 1989. 273--279. 被引量:1
  • 10Liang W G, Zhu J X, Yu Z Q, et al. Radial nonuniformity of flow structure in a liquid-solid circulating fluidized bed [ J ]. Chemical Engineering Science, 1996,51 (10) : 2001--2010,. 被引量:1

共引文献27

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部