期刊文献+

特征加权KNN分类算法在跨境电商人才培养中的应用 被引量:1

Application of a Feature-weighted KNN Classification Algorithm in Cross-border E-commerce Talent Training
下载PDF
导出
摘要 随着全球化的不断深化,跨境电子商务已成为某些行业转型发展的新动力,社会需要更多的专业人才。为了有效提高人才培养的综合水平,需要根据企业的要求,建立跨境电商人才培养标准和评价模型。调研了企业对跨境电商人才的不同素质特征的认同度,采用AHP算法对这些特征在跨境电商人才的培养过程中的重要程度进行定量分析,得到对不同特征的权重值,进行KNN算法的分类,建立对跨境电商人才的评估模型,为跨境电商人才培养提供有益参考。 With the deepening of globalization,cross-border e-commerce has become a new driving force for the transformation and development of certain industries,and the society needs more professional talents.In order to effectively improve the comprehensive level of talent training,it is necessary to establish cross-border e-commerce talent training standards and evaluation models according to the requirements of enterprises.This paper investigates the degree of recognition of different quality characteristics of cross-border e-commerce talents,uses AHP algorithm to quantitatively analyze the importance of these features in the training process of cross-border e-commerce talents,and obtains weight values for different characteristics.The classification of the KNN algorithm is carried out to establish an evaluation model for cross-border e-commerce talents,which provides a useful reference for the training of cross-border e-commerce talents.
作者 刘婉莹 LIU Wanying(Aviation Management Engineering College, Xi’an Aeronautical Polytechnic Institute, Xi’an 710000, China)
出处 《微型电脑应用》 2020年第9期44-46,共3页 Microcomputer Applications
基金 西安航空职业技术学院2018年校级教改重点课题(18XHJG_002) 2019年度陕西省职业教育研究规划课题(SZJGH19—020)。
关键词 跨境电商 AHP算法 权重值 KNN算法 cross-border e-commerce AHP algorithm weight value KNN algorithm
  • 相关文献

参考文献11

二级参考文献61

  • 1李雪峰,刘鲁,吴丽花.在线拍卖商品最终成交价格预测[J].计算机工程,2006,32(18):189-191. 被引量:6
  • 2Subha D Puthankattil, Joseph Paul K, Aeharya U, et al. EEG Sig- nal Analysis: A Survey [ J]. Journal of Medical Systems, 2010, 34(2) :195 -212. 被引量:1
  • 3Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology : A review of the first international meeting [ J 1. IEEE Transactions on Rehabilitation Engineering, 2000, 8 ( 2 ) : 222 - 225. 被引量:1
  • 4NeuroSky. ThinkGear AM [ EB/OL ]. Copyright NcuroSky Inc. 2011. http: // www. seeedstudio, com/document/pdf/TGAM% 20Datasheet. pdf. 被引量:1
  • 5Jordan M, Kleinberg J, Schslkopf B. Pattern Recognition and Ma- chine Learning[ M]. 2nd ed. Springer, 2007. 被引量:1
  • 6Yasui Y, Tian Q, Yamanchi N. A data process and wavelet analysis method used for monitoring daily physiological attributes [ J ]. Engi- neering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 2008:1447 -1450. 被引量:1
  • 7Liao L D, Lin C T, McDowell K. et al. Biosensor technologies for augmented brain computer interfaces in the next decades [ J ]. Pro- ceedings of the IEEE, 2012,100 : 1553 - 1566. 被引量:1
  • 8Bang J W. Noise reduction in brainwaves by using both EEG signals and frontal viewing camera images [ J ]. Sensors ( Basel, Switzer- land) , 2013,13(5) :6272 -6294. 被引量:1
  • 9Ho C. Mental tasks discrimination by neural networks with wavelet transform [ J 1. Microsystem technologies. Sensors, actuators, sys- tems integration, 2005,11 (8) :933 -942. 被引量:1
  • 10Yasui, Yoshitsugu. A Brainwave Signal Measurement and Data Pro- cessing Technique for Daily Life Applications [ J 1. Journal of Physi- ological anthropology,2009,28 ( 3 ) : 145 - 150. 被引量:1

共引文献165

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部