期刊文献+

基于核化K-means和SVM分类回归的Wi-Fi室内定位算法 被引量:10

Wi-Fi indoor localization algorithm based on kernel K-means and SVM classification regression
下载PDF
导出
摘要 针对目前指纹室内定位系统指纹库管理效率低、实时性差和定位精度低的问题,提出了一种新的基于核化K-means和SVM分类回归的无线定位算法。首先利用核化K-means算法将输入的预处理后的RSS(Received Signal Strength)信号进行无监督聚类,将聚类后的数据信息存入指纹特征数据库,然后通过SVM回归的机器学习算法对特征数据库的数据进行训练,得到一种最优的拟合位置函数的数学模型。并且采用粒子群算法对参数进行寻优,进行实验仿真。实验结果表明,该算法有效地提升了定位精度,优于KNN、WKNN、SVR等室内定位算法。 Current indoor localization system has a low real-time performance,low precision,and bad efficiency of the fingerprint library. In order to solve the problem,this paper proposed a new indoor positioning algorithm based on kernel K-means and SVM classification regression methods. The algorithm firstly employed preprocessed RSS signal to conduct unsupervised cluster and then saved the data into fingerprint database when the kernel K-means algorithm had finished. Secondly,SVM learning machine made use of the input sample data to train and generated a mathematical model of optimal fitting position function. Finally particle swarm optimization( pso) algorithm was used for parameters optimization and the simulation experiment was carried out. The results of experiments show that the proposed algorithm effectively enhances the accuracy and is better than that of K-means,KNN and other localization algorithms.
出处 《信息技术》 2018年第1期113-117,共5页 Information Technology
关键词 室内定位 核K-means算法 SVM分类回归 无监督聚类 indoor positioning kernel K-means algorithm SVM classification regression unsupervised cluster
  • 相关文献

参考文献3

二级参考文献27

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:189
  • 2方旭明,戚彩霞,向征.IEEE 802系列无线网络网状组网与移动切换技术综述[J].计算机应用,2006,26(8):1756-1761. 被引量:12
  • 3汤丽 徐玉滨 周牧等.基于K近邻算法的WLAN室内定位技术研究.计算机科学,2009,. 被引量:11
  • 4万群,郭贤生,陈章鑫.室内定位理论、方法和应用[M].北京:电子工业出版社,2012:1-5. 被引量:15
  • 5Niculescu D, Nath B. Ad hoc positioning system(APS) us- ing AOA[C]//Proc of the 22rid Annual Joint Conf of the IEEE Computer and Communications Societies. Piscat- away, N J: IEEE, 2003:1734-1743. 被引量:1
  • 6Zhang Y W, Brown A K, Malik W Q, et al. High resolution 3-D angle of arrival determination for indoor UWB multipa- th propagation[J].IEEE Trans on Wireless Communications, 2008,7(8): 3047-3055. 被引量:1
  • 7Llombart M, Ciurana M, Barcelo-Arroyo F. On the scalabili- ty of a novel WLAN positioning system based on time of ar- rival measurements[C]//Proc of the 5th workshop on Posi- tioning, Navigation and Communication. Piscataway, NJ: IEEE, 2008:15-21. 被引量:1
  • 8Lu W, Han Jet al. Discovery of general knowledge in large spatial databases. In: Proc. Far East Workshop on Geograph- ic Information Systems[J]. Singapore, 1993. 275-289. 被引量:1
  • 9Likas, M. Vlassis, J. Verbeek. The global k-means clustering al- gorithm. Pattern Recognition. Febuary, 2003, 36(2): 451-461. 被引量:1
  • 10Hui Liu,H. Darabi,P. Banerjee,Jing Liu.Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems Man and Cybernetics . 2007 被引量:4

共引文献31

同被引文献73

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部