期刊文献+

一种肌电信号采集的神经接口设计 被引量:3

A Neural Interface Design of EMG Signal Acquisition
下载PDF
导出
摘要 在人机交互的智能控制中,对人体肌电信号的采集成为了人机交互中的重要环节;为了满足基于表面肌电信号控制的外骨骼康复机器人实验的需要,设计了一种16路通道肌电信号采集和滤波电路,并通过DSP28335的AD和SCI分别实现对肌电信号的模数转换以及与上位机通讯,DSP28335能够任意的给定采样频率和通信波特率,以满足不同的实验或设备的要求,同时对经AD转换后的肌电信号数据进行归一化处理,对其进行比例缩放以保留更多的小数位数据;实验结果表明,所设计的肌电信号神经接口装置稳定性较好,抗干扰能力强,成功地抑制了运动伪迹和工频干扰,能够有效地采集手臂肌电信号,保留其动作特征,满足肌电信号手势神经解码的要求。 In intelligent control of human-computer interaction,the electromyographic(EMG)signal collection to the human body has become the important step of human-computer interaction.In order to meet the needs of exoskeleton rehabilitation robot experiment based on surface EMG signal control,we design an 16-way channel electromyographic signal acquisition and filter circuit,AD and SCI of DSP28335 are used to convert the EMG signals and communicate with the host computer,DSP28335 can arbitrarily give sampling frequency,and communication baud rate,in order to meet the requirements of different experiments or equipments,at the same time,the AD transformed EMG data were normalized and scaled to retain more decimal data.The experimental results show that the designed EMG neural interface device has good stability and strong anti-interference ability,which successfully suppressed motion artifacts and power frequency interference,and can effectively collect arm EMG signals,retain their motion characteristics,and meet the requirements of EMG signal gesture neural decoding.
作者 谢作述 王从庆 Xie Zuoshu;Wang Congqing(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《计算机测量与控制》 2020年第9期168-172,共5页 Computer Measurement &Control
基金 国防科技重点实验室开放基金(6142222190310) 江苏省科技计划项目(BE2016757)。
关键词 肌电信号 采集手环 带通滤波 DSP28335 EMG signal acquisition bracelet bandpass filter DSP28335
  • 相关文献

参考文献9

二级参考文献25

  • 1姚福安,徐衍亮.高性能多阶有源带通滤波器设计[J].电子测量与仪器学报,2005,19(2):20-25. 被引量:28
  • 2李钟慎.新型高阶Butterworth最佳传递函数[J].华侨大学学报(自然科学版),2006,27(2):174-176. 被引量:6
  • 3韩硕.神经网络在GPS高程拟合中的应用[J].测绘通报,2006(4):48-50. 被引量:32
  • 4DELUCA C J. Physiology and mathematics of myoelectric signals [J]. IEEE Transactions on Biomedicine Engineering, 1979, 26 (6): 313-325. 被引量:1
  • 5ZHAO Z Y, CHEN X, ZHANG X, et al. Study on online gesture sEMG recognition[C]. LNCS, 2007, 4681: 1257- 1265. 被引量:1
  • 6FUKUDA O, TSUJI T. A human-assisting manipulator teleo- perated by EMG signals and arm motion[J]. IEEE Transactions on Robotics and Automation, 2003, 19(2): 210-222. 被引量:1
  • 7ASO S, SASAKI A, HASHIMOTO H, et al. Driving electric car by using EMG interface[C]. IEEE International Conferences on Cybernetics Intelligent Systems, 2006: 1-5. 被引量:1
  • 8TOSHIYUKI K, OSAMU A. Proposal of anticipatory pattern recognition for EMG prosthetic hand control[C]. IEEE International Conferences on SMC, 2008: 897- 902. 被引量:1
  • 9HERMIE J. Development of recommendations for SEMG sensors and sensor placement procedures[J]. Journal of Electromyography and Kinesiology. 2000, 10(5): 361-374. 被引量:1
  • 10[1]华成英,童诗白.模拟电子技术基础[M].4版.北京:高等教育出版社,2006:220-245. 被引量:9

共引文献68

同被引文献37

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部