期刊文献+

基于时延的小鼠初级运动皮层局部场电位解码研究

Time-delay-based neural decoding using LFP signals in the primary motor cortex of mice
原文传递
导出
摘要 脑机接口研究中常利用神经电生理信号进行神经信息的解码,但由于小鼠神经电信号(特别是spike)慢性记录较难,目前脑机接口在小鼠上开展较少.本研究记录小鼠初级运动皮层上的局部场电位信号(localfield potential, LFP),通过计算该信号的功率谱密度作为特征输入,采用SVM (support vector machines)分类算法对小鼠压杆运动中的神经信息进行解码.结果发现解码所获得的运动信号与真实信号之间存在一个提前的时间差.为此,我们构建了一个时延SVM模型,利用小鼠上仅有的四通道LFP信号实现了二值运动信号的解码,且时延SVM解码精度更高. In the research of brain-computer interfaces,the neural electrophysiological signals are commonly used for neural information decoding.However,due to the difficulty in recording the neural electrophysiological signals of mice,especially spike,a brain-computer interface is seldom used.In this study,the local field potential(LFP)signals of the primary motor cortex of mice are recorded,and the power spectral density of the LFP is calculated as the input features.The SVM classification algorithm is used to decode the neural information of mice during the lever-pressing movement.The obtained results illustrate that the predicted movement has an early time between the real movement.To this end,a time-delay SVM model is built to decode the binary motion signal for the only four-channel LFP signal of the mice.The result shows that the time-delay SVM decoding achieved high-accuracy performance.
作者 任轶佐 陈静 汪蕊雪 张韶岷 Yizuo REN;Jing CHEN;Ruixue WANG;Shaomin ZHANG(Key Laboratory of Biomedical Engineering of Education Ministry,Qiushi Academy of Advanced Studies,Zhejiang University,Hangzhou 310027,China;Department of Biomedical Engineering,College of Biomedical Engineering and Instrumental Science,Zhejiang University,Hangzhou 310027,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2019年第11期1517-1527,共11页 Scientia Sinica(Informationis)
基金 国家十三五重点研发计划项目(批准号:2017YFC1308501,2017YFGH001560) 国家自然科学基金重大仪器项目(批准号:31627802) 国家自然科学基金面上项目(批准号:31371001)资助
关键词 小鼠 脑机接口 局部场电位 初级运动皮层 神经解码 时延 mouse brain-machine interfaces local field potential primary motor cortex neural decoding timedelay
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部