期刊文献+

基于Logistic回归和平均贝叶斯网络的人员开窗行为研究 被引量:2

Research on personnel window opening behavior based on Logistic regression and average Bayesian network models
下载PDF
导出
摘要 对天津某高校宿舍内的人员开窗行为进行了一个完整供暖季的监测。对传统Logistic开窗预测模型的输入参数进行了简化,提出了预测准确度较高且更具实用价值的简化Logistic回归模型。并将平均贝叶斯网络模型引入开窗行为的预测中,取得了较好的预测效果,模型预测准确率为82.22%,其中开窗的预测准确率比Logistic回归模型提高14.16%,体现了平均贝叶斯网络模型在开窗行为预测中的优越性。 Investigates the personnel window opening behaviors in the dormitories of a university in Tianjin during a whole heating season.Simplifies the input parameters of the traditional Logistic window prediction model,and presents a simplified Logistic regression model with higher prediction accuracy and practicability.Predicts the window opening behavior by the average Bayesian network model,and obtains a better prediction effect,with 82.22%of the prediction accuracy.The prediction accuracy of window opening of the average Bayesian network model is 14.16%higher than that of the Logistic regression model,which reflects the superiority of the average Bayesian network model in the prediction of window opening behaviors.
作者 杨嘉楠 叶天震 李琨 Yang Jianan;Ye Tianzhen;Li Kun(Tianjin University,Tianjin,China;不详)
出处 《暖通空调》 2020年第9期135-140,121,共7页 Heating Ventilating & Air Conditioning
基金 “十三五”国家重点研发计划项目(编号:2016YFC0700503)。
关键词 平均贝叶斯网络 LOGISTIC回归 预测模型 开窗行为 开窗概率 average Bayesian network Logistic regression prediction model window opening behavior window opening probability
  • 相关文献

参考文献2

二级参考文献24

  • 1Leaman A, Bordass B. Productivity in buildings: the 'killer' variables[ J]. Building Research & Information, 1999,27 ( 1 ) : 4 -20. 被引量:1
  • 2Paeiuk M. The role of personal control of the environment in thermal comfortand satisfaction at the workplace [ D]. Wisconsin Milwaukee: University of WisconsinMilwaukee,1989. 被引量:1
  • 3Roulet C A, Johner N, Foradini F, et al. Percieved health and comfort in relation to energy use and building characteristics [ J]. Building Research and Information, 2006,34(5 ) :467-74. 被引量:1
  • 4Torture J. Central automatic control ordistributed occupant control for better indoor environment quality in the future, Building and environment [J]. Building and Environment, 2010,45:8-23. 被引量:1
  • 5Bahai A S, James P A B. Urban energy generation: the added value of photovoltaics in social housing [ J ]. Renewable and Sustainable Energy Reviews, 2007,11:2121-2136. 被引量:1
  • 6Andersen R. The influence of occupants' behaviour on energy consumption investigated in 290 identical dwellings and in 35 apartments [ C ]//Proceedings of healthy buildings. Brisbane, Australia : 2012. 被引量:1
  • 7CIBSE 2004 CIBSE Guide F-Energy efficiency in buildings[ S]. London: The Chartered Institution of Building Services Engineers, 2004. 被引量:1
  • 8WALLACE L A, EMMERICH S J, HOWARD-REED C. Continuous measurements of air change rates in an occupied house for l year: The effect of temperature, wind, fans, and windows [ J]. Journal of Exposure Analysis and Environmental Epidemiology, 2002,12, 296-306. 被引量:1
  • 9Bekfi G, Toftum J, Clausen G. Modeling ventilation rates in bedrooms based onbuilding characteristics and occupant behavior [ J]. Building and Environment, 2011, 46:2230-2237. 被引量:1
  • 10RIJAL H B, TUOHY P, HUMPHREYS M A, et al. Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings [ J ]. Energy and Buildings, 2007,39:823-836. 被引量:1

共引文献12

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部