期刊文献+

融合迁移学习和神经网络的皮肤病诊断方法 被引量:3

A skin diseases diagnosis method combining transfer learning and neural networks
下载PDF
导出
摘要 针对医学特征对患者病情发展的时间顺序无法有效表达,医学特征构建工作耗费大量人工成本,以及皮肤病数据样本数量较少等问题,提出了融合迁移学习和神经网络的皮肤病辅助诊断方法。该方法将TextLSTM(long short term memory neural network for text)、TextCNN(convolutional neural network for text)以及RCNN(recurrent convolutional neural networks for text classification)等3种基于神经网络的文本分类模型应用于皮肤病辅助诊断,同时融入迁移学习技术,能够在一定程度上将皮肤病专业书籍中的理论知识迁移到诊断模型中。在皮肤病多分类实验中,本文方法的正确率优于对比方法;在皮肤病二分类实验中,本文方法的召回率优于对比方法。迁移学习对实验结果的积极影响率高于75%。 To address the problems that medical features can not effectively express the chronological order of a patient’s condition,feature construction incurs high labor costs,and the number of diagnosed cases of skin diseases is relatively low,this study proposes binary classification and multi-classification diagnostic methods based on neural network and transfer learning of multisource data for diagnosing skin diseases.The text classification model based on three neural network models,namely,TextLSTM(long short term memory neural network for text),TextCNN(convolutional neural network for text),and RCNN(recurrent convolutional neural networks for text classification),is applied to dermatological auxiliary diagnosis.At the same time,the method incorporates transfer learning,which can transfer theoretical knowledge of skin diseases obtained from books to the diagnostic models to a certain degree.Results show that the accuracy rate of the multi-classification diagnostic method is higher than that of the binary classification diagnostic method.By contrast,the recall rate of the binary classification diagnostic method is higher than that of the multi-classification diagnostic method.Thus,transfer learning has a positive effect on more than 75%of the experimental results.
作者 商显震 韩萌 王少峰 贾涛 许冠英 SHANG Xianzhen;HAN Meng;WANG Shaofeng;JIA Tao;XU Guanying(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China)
出处 《智能系统学报》 CSCD 北大核心 2020年第3期452-459,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61563001) 宁夏自然科学基金项目(NZ17115) 计算机应用技术宁夏回族自治区重点学科项目(PY1703).
关键词 皮肤病诊断 神经网络 迁移学习 文本分类 卷积神经网络 循环神经网络 长短期记忆网络 辅助诊断 skin disease diagnosis neural network transfer learning text classification convolutional neural network recurrent neural network long short term memory neural network auxiliary diagnosis
  • 相关文献

参考文献4

二级参考文献98

  • 1李邻峰.接触性皮炎与皮肤变态反应[M].2版.北京:北京大学医学出版社,2003:80-82. 被引量:5
  • 2Walker SL, Shah M, Hubbard VG. Skin disease is common in rural Ne- pal: results of a point prevalence study[ J]. British Journal of Derma- tology ,2008,158 ( 2 ) : 334 - 338. 被引量:1
  • 3Pierard G. Onychomycosis and other superficial fungal infections of the fool in the elderly: a pan-European survey [ J ]. Dermatology, 2001, 202(3) : 220-224. 被引量:1
  • 4Anderson EB, Draft KS. Update in dermatopathology [ J ]. Am J Clin Pathol,2006,125 (Suppl) : S50 - 70. 被引量:1
  • 5Lazarov A, Nevo K, Pardo A, et al. Self-reported skin disease in hydrotherapists working in swimming pools[ J ]. Contact Dermatitis, 2005,53(6) :327 -331. 被引量:1
  • 6Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144. 被引量:1
  • 7Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128. 被引量:1
  • 8Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218]. 被引量:1
  • 9Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545. 被引量:1
  • 10Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415]. 被引量:1

共引文献539

同被引文献55

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部