期刊文献+

基于主题关联挖掘的跨类型数字资源分类方法 被引量:3

Classification Methods of Cross-type Digital Resources Based on Topic Association Mining
原文传递
导出
摘要 针对当前跨类型数字资源自动分类研究中未充分利用不同类型数字资源特征之间的潜在语义关联以及无法解决跨类型数字资源分类过程中的维度灾难和特征稀疏等问题,提出一种基于主题相关性挖掘的跨类型数字资源分类方法。通过TG-LDA模型对数字资源进行语义建模,并结合开放知识库Wikipedia对建模后的共享主题空间进行语义概念的扩展,最后通过Max Ent、SVM等多种算法实现对数字资源的跨类型分类。实验表明,该方法能有效增强不同类型数字资源间的亲和性,提高不同类型数字资源间的分类性能。 To solve the shortcomings that the current studies of automatic classification of cross-type digital resources cannot fully use the latent semantic association among various digital resource features and the problems of curse of dimensionality and feature sparse in the classification process of cross-type digital resources,this paper proposes a cross-type digital resources classification method based on topic association mining. The paper carries on the semantic modeling for digital resources based on TG-LDA model,and extends the semantic concept of sharing topic space via the open knowledge database Wikipedia. Finally,the paper realizes the cross-type classification of digital resources based on Max Ent and SVM. The experiments demonstrate that the proposed approach can effectively increase the affinity of different types of digital resources and ultimately improve the performance of classification.
出处 《情报理论与实践》 CSSCI 北大核心 2015年第11期108-114,共7页 Information Studies:Theory & Application
基金 国家自然科学基金项目"基于社会网络的协作模型及推荐技术研究"的成果 项目编号:71102111
关键词 数字资源 主题挖掘 跨类型分类 分类方法 digital resources topic mining cross-type classification classification methods
  • 相关文献

参考文献20

  • 1韩翠峰.大数据带给图书馆的影响与挑战[J].图书与情报,2012(5):37-40. 被引量:298
  • 2梅灿华,张玉红,胡学钢,李培培.一种基于最大熵模型的加权归纳迁移学习方法[J].计算机研究与发展,2011,48(9):1722-1728. 被引量:4
  • 3孟佳娜.迁移学习在文本分类中的应用研究[D].大连:大连理工大学,2011. 被引量:4
  • 4YANG P, GAO W. Information-theoretic multi-view domain ad- aptation: a theoretical and empirical study [ J]. Journal of Ar- tificial Intelligence Research, 2014, 49 : 501-525. 被引量:1
  • 5覃姜维..迁移学习方法研究及其在跨领域数据分类中的应用[D].华南理工大学,2011:
  • 6XIA R, HU X, LU J, et al. Instance selection and instance weighting for cross-domain sentiment classification via PU learn- ing [ C ] //Proceedings of the 23ra Int Joint Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2013: 2176-2182. 被引量:1
  • 7庄福振,罗平,何清,史忠植.迁移学习研究进展[J].软件学报,2015,26(1):26-39. 被引量:463
  • 8HUANG J, SMOLA A, GRETI'ON A, et al. Correcting sam- pie selection bias by unlabeled data [ C ] //Proceedings of the 21st Annual Conference on Neural nformation Processing Sys- tems. Cambridge: MITPress, 2007 (19): 601-608. 被引量:1
  • 9DAI W, YANG Q, XUE G, et al. Boosting for transfer learn- ing [ C ] //Proceedings of the 24th International Conference on Machine Learning (ICML). New York, USA: ACM, 2007: 193 -200. 被引量:1
  • 10LI S, XUE Y, WANG Z, et al. Active learning for cross-do- main sentiment classification [ C ] // Proceedings of the 23~ Int Joint Conf on Artificial Intelligence. Menlo Park, CA: AAA, 2013: 2127-2133. 被引量:1

二级参考文献155

  • 1王细薇,樊兴华,赵军.一种基于特征扩展的中文短文本分类方法[J].计算机应用,2009,29(3):843-845. 被引量:36
  • 2Pan S, Yang Q. A survey on transfer learning [J].IEEE Trans on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 被引量:1
  • 3Dai W, Yang Q, Xue G, et al. Boosting for transfer learning [C] //Proc of the 24th Int Conf on Machine Learning. New York: ACM, 2007: 193-200. 被引量:1
  • 4Berger A L, Pietra S, PIetra V. A maximum entropy approach to natural language processing[J]. Computational Linguistics, 1996, 22(1): 38-73. 被引量:1
  • 5Raina R, Battle A, Lee H, et al. Self-taught learning: Transfer learning from unlabeled data [C] //Proc of the 24th Int Conf on Machine Learning. New York: ACM, 2007: 759-766. 被引量:1
  • 6Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification [C] //Proc of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic: ACL Press, 2007: 432-439. 被引量:1
  • 7Cao B, Liu N, Yang Q. Transfer learning for collective link prediction in multiple heterogenous domains [C]//Proc of the 27th Int Conf on Machine Learning. Haifa, Israel: Omnipress, 2010:159-166. 被引量:1
  • 8Andrew A, Ramesh N, William W C. A comparative study of methods for transductivc transfer learning [C] //Proc of the 7th IEEE Int Conf on Data Mining Workshops. Los Alamitos, CA: IEEE Computer Society, 20077 77-82. 被引量:1
  • 9Dai W, Xue G, Yang Q, et al. Transferring naive Bayes classifiers for text classification [C] //Proc of the 22nd AAAI Conf on Artificial Intelligence. Vancouver, British Columbia.. AAAI Press, 2007:540-545. 被引量:1
  • 10Daume III H, Marcu D. Domain adaptation for statistical classifiers [J].Journal of Artificial Intelligence Research, 2006, 26:101-126. 被引量:1

共引文献780

同被引文献49

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部