期刊文献+

基于长短时记忆模型的情景演化分析系统实践 被引量:1

Practice of Scenario Evolution Analysis System Based on Long and Short Time Memory Model
下载PDF
导出
摘要 情景演化分析系统的核心是利用大数据技术提取历史数据特征建立关联序列,通过深度学习建立无标记网络动力学模型,基于长短时记忆模型和动态网络方法对个体历史活动轨迹、网络行为、关联关系的演化进行分析,研究个体行为的规律,为个体行为分析预测提供有效的技术手段,解决个体行为随时间序列情景演化分析的实际问题。 Situational evolution analysis system is the core of big data technology is used to extract the characteristics of history data associated sequences,through deep learning unmarked network dynamics model is established,based on the length of the memory model and dynamic network method for individual course activity history,network behavior,the evolution of the correlation analysis,study the law of individual behavior,provide effective technical means for analysis and prediction of individual behavior,the solution to individual behavior over time sequence evolution analysis of practical problems.
作者 李道远 刘诚傲 黄昌金 曾青军 王庆友 卢翠平 吴刘青 LI Dao-yuan;LIU Cheng-ao;HUANG Jin-chang;ZENG Qing-jun;WANG Qing-you;LU Cui-ping;WU Liu-qing(Guangzhou Intelligence Communications Technology Co.,Ltd.Guangzhou 510000,China;China Academy of Electronic and Information Technology,Beijing 100041,China)
出处 《中国电子科学研究院学报》 北大核心 2020年第8期796-801,共6页 Journal of China Academy of Electronics and Information Technology
关键词 情景演化 长短时记忆 动态网络方法 situational evolution long and short time memory dynamic network method
  • 相关文献

参考文献2

二级参考文献14

  • 1K.Sznajd-Weron,J.Sznajd.Opinion Evolution in Closed Com-munity[J].Int.J.Mod.Phys.C,2000,11(6):1157-1165. 被引量:1
  • 2F.Vazquez,P.L.Kapivsky,S.Redner.Constrained Opinion Dy-namics:Freezing and Slow Evolution[J].J.Phys.A.Gen,2003,36:61-68 被引量:1
  • 3Serge Galam.Minority Opinion Spreading in Random Geometry[J].Eur.Phys.J.B,2002,25(4):403-406 被引量:1
  • 4Christopher Musselle.Opinion Formation Dynamics And The In-fluence Of The Media[J].http://bccs.bristol.ac.uk/toPro-gramme/_project/2008/Chris_Musselle_S08/ 被引量:1
  • 5Daniel Ramirez-Cano,Jeremy Pitt.Follow the Leader:ProfilingAgents in an Opinion Formation Model of Dynamic Confidenceand Individual Mind-sets[C].In Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent Tech-nology,2006:660-667 被引量:1
  • 6Shuguang Suo,Yu Chen.The Dynamics of Public Opinion inComplex Networks[J].Journal of Artificial Societies and SocialSimulation,2008,11(4):2 被引量:1
  • 7Jan Lorenz.Consensus Strikes Back in the Hegselmann-KrauseModel of Continuous Opinion Dynamics Under Bounded Confi-dence[J].Journal of Artificial Societies and Social Simulation,2006,9(1) 被引量:1
  • 8GUO Long,CHANG Yun-feng,CAI Xu.The Evolution of O-pinions on Scale Free Networks[J].Front.Phys.China,2006(4):506-509 被引量:1
  • 9Santo Fortunato.Damage Spreading and Opinion Dynamics onScale Free Networks[J].Phys.C,2004,15(1):683-690 被引量:1
  • 10Johannes Bonnekoh.Monte Carlo Simulations of the Ising and theSznajd Model on Growing Barabasi-Albert Networks[J].ht-tp://arxiv.org/PS_cache/cond-mat/pdf/0305/0305125v1.pdf 被引量:1

共引文献396

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部