期刊文献+

基于G-Means的中医药可穿戴设备的数据汇聚方法研究 被引量:2

The Research of the G-Means Based Data Transmission Method for the Wearable Devices for Traditional Chinese Medicine
下载PDF
导出
摘要 目的主要研究高效的数据汇聚方法,以减少中医药可穿戴设备节点的能量消耗,并延长中医药可穿戴设备网络的生存周期。方法通过G-Means算法,按照中医可穿戴设备节点的地理位置,将节点划分为多个服从高斯分布的簇集。根据节点的剩余能量与地理位置为所有簇集内可穿戴设备节点分配权重,所计算的权重值为每个簇集选取合适的簇头节点。网络内所有节点数据经簇头节点收集并汇聚至中医医生观测平台。结果文中的方法在场景1与场景2中所有节点在网络前100轮的平均能耗分别为0.0262 J与0.0555 J,比同类型方法均降低10%以上。文中所提方法在场景1与场景2下首个节点的失效时间为910轮与849轮,比同类型方法均延长10%以上。结论高效中医药可穿戴设备的数据汇聚方法优化中医药可穿戴设备网络的拓扑结构,提高设备节点的能效性,并延长网络的生存周期。 Objective Research an efficient data gathering method to reduce the energy consumption of the Chinese medicine wearable devices and prolong the life-cycle of the Chinese medicine wearable device networks.Methods This study intends to adopt G-Means method to divide the devices into multiple clusters through the positions of the devices while the devices obey a Gaussian distribution.Then the study intends to assign the weights for all the devices of the clusters based on the residual energy and the positions,and use the weights to select appropriate cluster heads for each cluster.The selected cluster heads collect the data from the devices of the corresponding cluster and transmit the data to the sink node.Results The average energy consumption for all nodes of the first 100 rounds in scenario 1 and scenario 2 is 0.0262 J and 0.0555 J,respectively,which is more than 10%lower than the same type of methods.The failure time of the first node in scenario 1 and scenario 2 of the proposed method is the 910 thround and the 849 thround,which is more than 10%longer than the same type of methods.Conclusion The proposed efficient data gathering method for the Chinese medicine wearable devices can optimize the topology of the Chinese medicine wearable device networks,enhance the energy efficiency of the devices and extend the network life-cycle.
作者 王天舒 杨曦晨 胡孔法 胡晨骏 Wang Tianshu;Yang Xichen;Hu Kongfa;Hu Chenjun(College of Artificial Intelligence and Information Technology,Nanjing University of Chinese Medicine,Nanjing,210023,China;School of Computer Science and Technology,Nanjing Normal University,Nanjing,210042,China)
出处 《世界科学技术-中医药现代化》 CSCD 北大核心 2020年第6期1983-1991,共9页 Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology
基金 国家自然科学基金委员会面上项目(81674099):面向中医临床大数据的现代名老中医肺癌辨治规律并行挖掘策略及方法学研究,负责人:胡孔法 国家自然科学基金委员会青年项目(81503499):基于计算智能的心系基础证量化诊断方法学研究,负责人:杨涛。
关键词 中医可穿戴设备节点 中医可穿戴设备网络 分簇算法 能耗 生存周期 Chinese medicine wearable devices network of Chinese medicine wearable devices clustering energy consumption network life-cycle
  • 相关文献

参考文献5

二级参考文献27

  • 1Glauser W. Doctors among early adopters of Google Glass [J]. CMAJ,2013,185(16):1385. 被引量:1
  • 2张晓微.谷歌眼镜配上脸部识别应用可识别对方情绪[N/OL].htfp..//www.techweb.com.cn/ucweb/news/id/2015569. 被引量:1
  • 3季灵艳.移动技术必将重新定义医疗实践模式:专访GoogleGlass手术第一人Rafael J.Grossmann博士[NJOL].http://6d.dxy.cn/article/551077trace=weibo. 被引量:1
  • 4罗文欢,梁宏,陈薇.法一私立医院戴谷歌眼镜做教学示范手术全球首创[N/CL].http://tech.huanqiu.com/diseovery/2014-02/41850311html. 被引量:1
  • 5Kim L. Goog|e glass Delivers New Insight During Surgery. Wear- able Computer Technology Could Lead to Better Decision-Mak- ing in Operating Room [ N/OL ]. States News Service, October 30, 2013. http :/ /w w w.highbeam.com/ doc/1G1- 34 7 4 5 7 4 3 8.h tml. 被引量:1
  • 6Parslow GR. Commentary: Google glass: A head-up display to facilitate teaching and learning [J]. Biochem MI Biol Educ, 2014,42(1):91-92. 被引量:1
  • 7Muensterer OJ, Lacher M, Zoeller C, et al. Google Glass in pedi- atric surgery: an exploratory study [J] Int J Surg, 2014, 12(4) : 281-289. 被引量:1
  • 8胡媛,范昕建,王德蒇.对现代医学模式下中医药人才培养目标的几点思考[J].中国卫生事业管理,2008,25(2):115-116. 被引量:10
  • 9陈晓荣,李可基.8种市售运动传感装置计步功能的效度研究[J].中国运动医学杂志,2010,29(4):457-459. 被引量:7
  • 10王大壮,田侃.中医药师承教育人才培养模式探讨[J].中国卫生法制,2010,18(6):41-44. 被引量:20

共引文献56

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部