期刊文献+

Kadomtsev-Petviashvilli方程的直接相似约化

Similarity reductions of the KP equation using a direct method
下载PDF
导出
摘要 Clarkson和Kruskal发展的直接法(CK直接法)是求解非线性微分方程相似约化的一种强有力的方法.本文以Kadomtsev-Petviashvilli(KP)方程为例,运用CK直接法把KP方程简化为3种类型的(1+1)维偏微分方程,这3种偏微分方程等价于经典Lie方法得到的3种具有不同独立变量的相似约化方程.KP方程的解包含了更多经典Lie方法所遗漏的任意函数,例如,CK直接法得到的第3类约化可以分为3个子情形,而经典Lie法得到的KP方程的第3类解只是我们结果的一个子情形的特例. The direct method developed by Clarkson and Kruskal is a very efficient method to solve the similarity reduction of nonlinear differential equations.In this paper the Kadomtsev-Petviashvilli(KP)equation is taken as an example to simplify KP equation into three types of(1+1)dimensional partial differential equations using CK direct method.These three partial differential equations are equivalent to the three similar reduction equations with different independent variables obtained through the classical Lie method.The solution to the KP equation contains more arbitrary functions which the classical Lie method lacks.For example,the third type of reduction obtained using the direct method can be divided into three subcases,while the third type of solution to the KP equation obtained using the classical Lie method serves as a special case of a subcase of the result derived in this work.
作者 李家恒 李彪 LI Jiaheng;LI Biao(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)
出处 《宁波大学学报(理工版)》 CAS 2020年第5期105-113,共9页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(11775121,11435005) 浙江省教育厅科研项目(Y200907622) 宁波大学科技学院预研项目(003-21021003).
关键词 相似约化 KP方程 CK直接法 (1+1)维偏微分方程 Lie方法 similarity reduction KP equation CK direct method (1+1)-dimensional partial differential equation Lie method
  • 相关文献

参考文献4

二级参考文献8

  • 1P.J. Olver, Application of Lie Group to Differential Equa-tions, Springer, Berlin (1986); G.W. Bluman and J.D. Cole, J. Math. Mech. 18 (1969) 1025; P.A. Clarkson and M.D. Kruskal, J. Math. Phys. 30 (1989) 2201; S.Y. LOU, Phys. Lett. A151 (1990) 133. 被引量:1
  • 2S-Y LOU, X-Y TANG and J. LIN, J. Math. Phys. 41(2000) 8286. 被引量:1
  • 3TANG Xiao-Yan, LIN Ji and LOU Sen-Yue, Commun. Theor. Phys. (Beijing, China) 35 (2001) 399. 被引量:1
  • 4P.A. Clarkson and E.L. Mansfield, Acta Appl. Math. 39(1995) 245; E.L. Mansfield and P.A. Clarkson, Math. Comput. Simul. 43 (1997) 39. 被引量:1
  • 5S.Y. LOU, Commun. Theor. Phys. (Beijing, China) 26(1996) 487. 被引量:1
  • 6P.A. Clarkson, J. Phys. A: Math. Gen. 22 (1989) 2355, 3821; European J. Appl. Math. 1 (1990) 279; Nonlinearity 5(1992) 453; Math. Comp. Mod. 35 (1994) 255; Chaos, Soliton and Fractals 5 (1995) 2261; P.A. Clarkson and S. Hoon, European J. Appl. Math. 3 (1992) 381; J. Phys. A: Math. Gen. 26 (1993) 133; P.A. Clarkson and P. Win-ternitz, Physica D49 (1991) 257; P.A. Clarkson and D.K. Ludlow, J. Math. Anal. Appl. 186 (1994) 132. 被引量:1
  • 7S.Y. LOU, J. Phys. A: Math. Gen. 23 (1990) L649; Sci. China Ser. A34 (1991) 1098; J. Math. Phys. 33 (1992)4300; Phys. Lett. A176 (1993) 96; Math. Meth. Appl. Sci. 18 (1995) 789; S.Y. LOU and G.J. NI, Commun. Theor. Phys. (Beijing, China) 15 (1991) 465; S.Y. LOU, H.Y. RUAN, D.F. CHEN and W.Z. CHEN, J. Phys. A: Math. Gen. 24 (1991) 1455; S.Y. LOU and H.Y. RUAN, J. Phys. A: Math. Gen. 26 (1993) 4679. 被引量:1
  • 8R. Fujioka and A. Espinosa, J. Phys. Soc. Japan 60 (1991)4071; M.C. Nucci, Phys. Lett. A64 (1992) 49; C.Z. QU, Int. J. Theor. Phys. 34 (1995) 99; Commun. Theor. Phys. (Beijing, China) 24 (1995) 177; J.F. ZHANG, Commun. Theor. Phys. (Beijing, China) 24 (1995) 69; P.G. Estevez, Stud. Appl. Math. 95 (1995) 73; E. Pucei. J. Phys. A:Math. Gen. 25 (1992) 2631; ibid. 26 (1993) 681; G. Sac-comandi, J. Phys. A: Math. Gen. 30 (1997) 2211. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部