摘要
提出了扩展的主对称方法,将它应用于2+1维可积模型—–Kadomtsev-Petviashvilli(KP)方程,获得了该方程中含有时间t的任意函数的广义对称,无需使用复杂的递归算子,即可直接从对称定义方程中得出关于KP方程对称的显式简单构造公式.本文中所有提到的对称都是此方程对称的特例,同时,还给出了由这些对称构成的一般无穷维李代数.
In this paper,an extended master symmetry method is proposed and applied to the(2+1)-dimensional integrable model Kadomtsev-Petviashvilli(KP)equation,and the generalized symmetry of any function containing time in the equation is obtained.Then an explicit and simple constructive formula for the symmetries of the KP equation is derived directly from the symmetry definition equation,in which the complicated recursion operators are skipped.All the known symmetries appear as special cases for those symmetries obtained in this work.The general infinite-dimensional Lie algebra constituted by these symmetries is also given.
作者
樊荣
李彪
FAN Rong;LI Biao(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)
出处
《宁波大学学报(理工版)》
CAS
2020年第5期93-98,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(11775121,11435005).
关键词
对称
李代数
显式表达式
symmetries
Lie algebra
explicit expression