摘要
针对传统月地返回轨道设计方法在从初始轨道直接转移的局限性,提出一种基于Lambert问题的月地转移轨道设计方法。该方法重新选取了轨道约束参数,并在笛卡尔坐标系下建立了返回轨道动力学模型,并基于该模型全面分析了返回轨道关于约束参数的变化特性。此外,针对带有约束条件的返回轨道优化设计问题,提出了快速收敛的函数构造法,并给出了有效的目标函数形式。以某一在轨环月飞行器的轨道参数作为初始轨道进行返回轨道计算,结果验证了所提出返回轨道设计方法以及函数构造法的有效性。
A method for designing a lunar return orbit based on the Lambert problem is proposed according to the limitation of the traditional orbit design method.An orbital dynamic model is presented in three-dimensional space using new constrained parameters.The characteristics of the lunar return orbits based on this model are well studied.A function construction method is presented to deal with the optimal design with constraint conditions and an effective objective function is proposed.The orbital parameters of a certain circumlunar spacecraft are used as the initial values to design the return orbit.The results verify the effectiveness of the proposed return orbit design method and function construction method.
作者
邱实
曹喜滨
王峰
张刚
QIU Shi;CAO Xi-bin;WANG Feng;ZHANG Gang(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2020年第7期901-909,共9页
Journal of Astronautics
基金
国家自然科学基金(61690212,61833009)。
关键词
环月飞行器
返回轨道
特性分析
函数构造法
Circumlunar spacecraft
Return trajectory
Characteristic analysis
Function construction method