摘要
基于由飞行器、行星及其卫星组成圆型限制性三体问题模型,通过庞加莱映射的方法,研究了飞行器从行星卫星附近逃逸的问题。在Jacobi常数确定的前提下,通过逆向积分,飞行器从L1或L2点附近返回近月点,得到近月点速度出发速度。研究结果表明绕飞L1点和L2点逃逸行星卫星需要的最低能量是不同的,从月球表面逃逸所需的速度脉冲分别比开普勒算法节省46.5m/s和42.3m/s,且均小于Villac等人在Hill模型下得到38.9m/s,从而改进了Villac等人的相关工作,同时也给出了从太阳系主要行星卫星表面逃逸所需的最小能量。
Escaping trajectories are investigated using a Poincar6 map method in the circular restricted three body problem consisting of spacecraft, planet and moon. On the condition that Jacobi constant is fixed, the escaping trajectories are integrated back to the first periapsis from vicinity of L1 and L2 and the escaping velocity of moon is obtained. The results show that the optimal escaping velocities through the vicinity of L1 and L2 are different. Compared with the Kepler method it saves 46.5 m/s and 42.3 m/s △V escaping from the moon. It is more precision than the result of 38.9 m/s which is obtained by Villac in the Hill problem model. The optimal escaping velocities of the primary planetary moon in the solar system are also presented.
出处
《航空学报》
EI
CAS
CSCD
北大核心
2007年第2期263-268,共6页
Acta Aeronautica et Astronautica Sinica
基金
国家自然科学基金(60535010)
关键词
逃逸轨道
圆形限制性三体问题
庞加莱截面
escaping trajectory
circular restricted three body problem
Poincaré section