期刊文献+

基于能量加权高斯过程回归的锂离子电池健康状态预测 被引量:22

State of health prediction of lithium-ion batteries based on energy-weighted Gaussian process regression
下载PDF
导出
摘要 针对容量再生现象影响锂离子电池健康状态预测(SOH)建模精度的问题,提出一种经验模态分解(EMD)的能量加权高斯过程回归(EWGPR)方法。该方法将容量再生现象看作是锂离子电池容量衰减过程的能量凸现,利用EMD分解获得样本的能量分布情况,根据能量情况计算每个样本的权重,进而建立基于能量加权高斯过程回归的锂离子电池SOH预测模型。基于NASA锂电池数据集的仿真实验结果表明,EWGPR方法比基本GPR算法具有更高的精度和适应性,单步预测和多步预测的均方根误差(RMSE)分别减少了3%和10%。 Aiming at the problem that the capacity regeneration phenomenon affects the state of health(SOH)prediction accuracy of lithium-ion batteries,an energy-weighted Gaussian process regression(EWGPR)of empirical mode decomposition(EMD)method is proposed.This method regards the capacity recovery phenomenon as the energy projection of the capacity decay process of lithium-ion battery.The energy distribution is obtained by EMD decomposition and the sample weights are calculated according to the energy distributions.Then the SOH prediction model of lithium-ion battery based on EWGPR is established.The experimental simulation results on the NASA lithium-ion battery datasets show that the EWGPR algorithm has higher accuracy and adaptability than the basic GPR algorithm,and the root mean square error(RMES)for single-step and multi-step predictions are decreased by more than 3%and 10%,respectively.
作者 郑雪莹 邓晓刚 曹玉苹 Zheng Xueying;Deng Xiaogang;Cao Yuping(College of Information and Control Engineering,China University of Petroleum(East China),Qingdao 266000,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第6期63-69,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61403418,21606256) 中央高校基本科研业务费专项资金(17CX02054) 山东省重点研发计划(2018GGX101025) 山东省自然科学基金(ZR2016FQ21,ZR2016BQ14)资助项目。
关键词 高斯过程回归 经验模态分解 容量再生现象 锂离子电池 健康状态 Gaussian process regression empirical mode decomposition capacity recovery phenomena lithium-ion battery state of health
  • 相关文献

参考文献6

二级参考文献183

共引文献301

同被引文献183

引证文献22

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部