摘要
1160 nm波段垂直外腔面发射半导体激光器(VECSEL)是医用橙黄激光的基频光源,但是其发光区的高应变InGaAs量子阱会引起严重的应变积累效应,限制高功率输出。提出一种在单个发光区内采用GaAsP材料对高应变InGaAs量子阱进行二次补偿的方法,保证发光区内的光学吸收层具有高的材料生长质量。提出含Al吸收层的结构,以降低GaAsP势垒引起的能带阻挡效应,提高了发光区光生载流子的注入效率。所制备的VECSEL器件激光波长为1160 nm,输出功率达1.02 W,并获得圆形对称的输出光斑形貌,光斑在正交方向上的发散角分别为10.5°和11.9°。
In the medical field,the 1160-nm wavelength vertical-external-cavity surface-emitting semiconductor laser(VECSEL)is the fundamental frequency lasing source of orange laser.However,the strain accumulation effect induced by the high strain InGaAs quantum well in the luminous zone limits high output power.In this study,the secondary compensation method is proposed for a high strain InGaAs quantum well using the GaAsP material in a single luminescent zone to achieve high material growth quality of optical absorption layers.The structure of the absorption layer containing Al is designed to reduce the photogenic carrier-blocking effect caused by GaAsP barrier and improve the injection efficiency of photogenic carriers.The lasing wavelength and output power of the prepared VECSEL devices are 1160 nm and 1.02 W,respectively.The lasing spot shows symmetrical morphology,and the divergence angles of the spot at orthogonal directions are 10.5°and 11.9°.
作者
张卓
宁永强
张建伟
张继业
曾玉刚
张俊
张星
周寅利
黄佑文
秦莉
刘云
王立军
Zhang Zhuo;Ning Yongqiang;Zhang Jianwei;Zhang Jiye;Zeng Yugang;Zhang Jun;Zhang Xing;Zhou Yinli;Huang Youwen;Qin Li;Liu Yun;Wang Lijun(State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun,Jilin 130033,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2020年第7期253-260,共8页
Chinese Journal of Lasers
基金
总装备部预研领域基金(61404140107)、国家自然科学基金(11674314,61874117,61434005)
吉林省重点科技研发项目(20180201119GX)。
关键词
激光物理
半导体激光器
光泵浦垂直外腔面发射半导体激光器
增益芯片
应变量子阱
laser physics
semiconductor laser
optically-pumped vertical-external-cavity surface-emitting semiconductor laser
gain chip
strain quantum well