期刊文献+

风险度量半参数变系数复合Expectile回归模型及应用 被引量:5

The semiparametric varying-coefficient composite expectile regression model in risk measurement and its application
原文传递
导出
摘要 本文结合半参数变系数回归模型、期望分位数风险价值(EVaR)的思想以及充分利用多个Expectile信息能提高参数估计效率的假设,提出了一类半参数变系数复合Expectile回归模型,并对该模型进行了估计,建立了所提出复合Expectile回归(CER)估计的大样本性质.针对该模型既含有参数部分也含有非参数部分的特征,采用了方便计算的三步估计方法.通过数值模拟也发现,当误差为厚尾或非对称分布时,在均方根误差(RMSE)的标准下,所提出的CER估计大大优于最小二乘(LS)估计和简单的Expectile回归(ER)估计.另外,本文还应用所发展的理论分析了我国货币政策对上证综指的影响. We propose a class of semiparametric composite expectile models with varying-coefficients via combining a semiparametric regression model with varying-coefficients,the EVaR thought and the assumption that using all information from multiple expectiles can improve the efficient of estimators.In this paper,we introduce estimation called composite expectile regression(CER),and we establish large sample properties of the resulting CER estimator.Based on the fact that the model includes the parametric part and the nonparametric part,we adopt a three-step estimating procedure.Our simulation studies demonstrate that our CER estimator is competent to the existing estimators,e.g.the least squares(LS)estimator or other expectile regression(ER)estimators,in the sense of root mean squared-error when the error follows a heavy-tailed or asymmetric distribution.In addition,we use the proposed method to analyze the relationship between China’s monetary policy and Shanghai Composite Index.
作者 刘晓倩 周勇 LIU Xiaoqian;ZHOU Yong(School of Economics and Finance,Shanghai International Studies University,Shanghai 200083,China;Key Laboratory of Advanced Theory and Application in Statistics and Data Science,MOE,Shanghai 200062,China;Academy of Statistics and Interdisciplinary Sciences,Faculty of Economics and Management,East China Normal University,Shanghai 200062,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2020年第8期2176-2192,共17页 Systems Engineering-Theory & Practice
基金 国家自然科学基金青年项目(71601123) 国家自然科学基金重点项目(71931004)。
关键词 风险度量 期望分位数风险价值(EVaR) 半参数 变系数 复合Expectile回归(CER) risk measurement expectile-based VaR(EVaR) semiparametric varying-coefficient composite expectile regression(CER)
  • 相关文献

参考文献16

二级参考文献175

共引文献232

同被引文献36

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部