摘要
引入了一种在量子场论中构造压缩算符的办法:考虑两个具有不同质量的同一标量场的自由哈密顿量,通过博戈留波夫变换,导出广义压缩算符,该算符把一个基态映射到另一个。该算符作用的有效性分别在量子场论的狄拉克表象和薛定谔泛函表象中得到了验证。我们相信,在任意实标量场理论中,只要存在两组以线性变换联系起来的生成湮灭算符,压缩算符就被类似的方法找到。
Our article introduces a method to construct the squeeze operator in quantum field theory:consider two free Hamiltonians for the same scalar field with two different masses,through Bogoliubov transformation,we derive a generalized squeeze operator which maps the ground state of one to the other.The efficiency of its operation is verified in both the Dirac representation and also the Schrodinger wavefunctional representation in quantum field theory.We believe that the squeeze operators can be found similarly in any real scalar field theory as long as there are two sets of creation and annihilation operators connected by linear transformations.
作者
周遥
Jarah Evslin
ZHOU Yao;Jarah Evslin(Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China;School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《原子核物理评论》
CAS
CSCD
北大核心
2020年第2期172-179,共8页
Nuclear Physics Review
基金
国家自然科学基金面上项目(11875296)
中国科学院前沿科学重点资助项目(QYZDY-SSW-SLH006)。
关键词
压缩算符
自由哈密顿量
博戈留波夫变换
狄拉克表象
薛定谔泛函表象
实标量场理论
squeeze operator
free Hamiltonian
Bogoliubov transformation
Dirac representation
Schrodinger wavefunctional representation
real scalar field theory