期刊文献+

Bézier曲线的多项式重新参数化检测

Polynomial reparameterization detection of Bézier curves
下载PDF
导出
摘要 研究了一种用于精确检测一条Bézier曲线的次数是否可以通过多项式重新参数化降低的算法。该算法对任意一条Bézier曲线,将重新参数化前后的基函数的关系用方程组的形式表达,但不需要解方程,而是通过系数表示的金字塔算法直接计算,可以精确求出用于重新参数化的多项式和降低次数后的Bézier曲线的控制顶点,并且该重新参数化的多项式在相差一个线性变换的前提下是唯一的。通过实例应用,该算法运算速度较之前的算法快。 An algorithm is presented to determine whether the degree of Bézier curve can be reduced by polynomial reparameterization.In the algorithm,for any Bézier curve,the relation between the basis functions before and after reparameterization is expressed as a system of equations.Instead of solving the equations,the polynomial for reparameterization and the control points of the lower degree Bézier curve can be calculated directly by a pyramid algorithm of coefficient reparameterization.In addition,the polynomial for reparameterization is unique to within a scale factor and a constant.Compared with the previous algorithm by examples,this algorithm possesses shorter computational time.
作者 沈莞蔷 王宏凯 SHEN Wan-qiang;WANG Hong-kai(School of Science,Jiangnan University,Wuxi Jiangsu 214122,China)
机构地区 江南大学理学院
出处 《图学学报》 CSCD 北大核心 2020年第4期576-582,共7页 Journal of Graphics
基金 国家自然科学基金项目(61772013) 中央高校基本科研业务费专项基金项目(JUSRP21816)。
关键词 BÉZIER曲线 多项式 重新参数化 基函数 金字塔算法 Bézier curve polynomial reparameterization basis function pyramid algorithm
  • 相关文献

参考文献7

二级参考文献26

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部