期刊文献+

移动边缘计算环境下面向安全和能耗感知的服务工作流调度方法 被引量:7

Security and energy aware scheduling for service workflow in mobile edge computing
下载PDF
导出
摘要 在移动边缘计算(MEC)环境中,用户将应用任务迁移至MEC端执行可以有效降低延时并减少能耗。然而,MEC环境面临潜在的恶意攻击,这些攻击可能导致隐私数据的丢失或泄露。基于此,提出了面向安全和能耗感知的服务工作流调度方法(SEA),该算法能在满足移动应用的风险率和截止时间限制条件下,最小化移动设备的能耗。SEA是基于粒子群优化算法,在编码中考虑了任务的调度位置、机密性服务和完整性服务。此外,还构建了新的安全模型,分别包括数据量、多核CPU、计算频率与安全开销之间的关系。最后,通过仿真实验证明了所提算法的可行性与有效性。 In the Mobile Edge Computing(MEC) environment, users migrate application tasks to MEC for execution to effectively reduce delay and reduce energy consumption. However, the MEC still faces data security problems, and the potential malicious attacks can result in the loss or disclosure of private data. On this basis, a Security and Energy Aware(SEA) scheduling for service workflow was proposed in MEC environment, which could minimize the energy consumption of mobile devices under the risk rate and deadline constraints of mobile applications. Based on Particle Swarm Optimization(PSO) algorithm, SEA algorithm considered the scheduling position, confidentiality service and integrity service of the tasks. In addition, a new security model was constructed, which included the relationship among data volume, multi-core CPU, computing frequency and security overhead. Simulation experiments demonstrated the feasibility and effectiveness of the proposed algorithm.
作者 李万清 刘辉 李忠金 袁友伟 LI Wanqing;LIU Hui;LI Zhongjin;YUAN Youwei(College of Computer and Technology,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1831-1842,共12页 Computer Integrated Manufacturing Systems
基金 浙江省公益性资助项目(2016C33170) 国家自然科学基金资助项目(61802095)。
关键词 移动边缘计算 工作流调度 安全模型 粒子群优化算法 mobile edge computing workflow scheduling security model particle swarm optimization algorithm
  • 相关文献

参考文献3

二级参考文献35

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 2LIN M, LIN Z X. A cost-effective critical path approach for service priority selections in grid computing economy[J]. Decision Support Systems, 2006, 42(3): 1628- 1640. 被引量:1
  • 3YU J, BUYYA R, THAM C K. Cost-based scheduling of workflow applications on utility grids[A]. Proceedings of the 1st IEEE International Conference on e-Science and Grid Computing[C], Melbourne, Australia, 2005. 被引量:1
  • 4KENNEDY J, EBERHART R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. 1995. 1942-1948. 被引量:1
  • 5EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[A]. Proc 6th Int. Symposium on Micro Machine and Human Science[C]. 1995.39-43. 被引量:1
  • 6PAN Q K, et al. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem[J]. Computers and Operations Research, 2008, 35(9): 2807-2839.. 被引量:1
  • 7FOSTER I, KESSELMAN C. The Grid: Blueprint for a Future Computing Infrastructure[M]. USA: Morgan Kaufmann Publishers, 1999. 被引量:1
  • 8FOSTER I, KESSELMAN C, NICK J M, et al. Grid service for distributed system integration[J]. IEEE Computer, 2002, 35(6): 37-46. 被引量:1
  • 9YU J, BUYYA R. Taxonomy of scientific workflow systems for grid computing[J]. SIGMOD RECORD, 2005, 34 (3): 44- 49. 被引量:1
  • 10BLYTHE J, JAIN S, DEELMAN E, et al. Task scheduling strategies for workflow-based applications in grids[A]. IEEE International Symposium on Cluster Computing and Grid, Cardiff, Wales[C]. UK, 2005.759-767. 被引量:1

共引文献41

同被引文献70

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部