期刊文献+

时间约束云工作流调度的粒子群搜索方法 被引量:14

Searching method for particle swarm optimization of cloud workflow scheduling with time constraint
下载PDF
导出
摘要 为了快速找到较优的调度方案,针对时间约束工作流调度问题,即能在满足用户的截止时间约束的条件下最小化调度费用,提出基于粒子群算法的最优调度方案搜索方法。利用关键路径进行粒子初始化和搜索阶段的筛选处理,不但能够显著提高搜索结果的精度,而且减少了搜索的计算时间。将改进算法和传统粒子群优化算法进行了实验评估对比,实验数据证明,使用该方法使粒子搜索的时间少于传统粒子群算法,并且结果也优于传统方法。 To get the optimal scheduling scheme quickly,aiming at the problem of scheduling time constrained cloud workflow which was minimized the total computing cost under the user's temporal constraint,a searching method of optimal scheduling solution based on Particle Swarm Optimization(PSO)algorithm was proposed.Owing to the problems such as random particles of traditional PSO algorithm and low search speed during the iteration,the critical path was used to select particle initialization and search space during the iterations,which was not only improved the searching accuracy,but also reduce the computing time.Compared with the traditional PSO,the experiment results proved that the proposed approach could achieve better performance with less computation time.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2016年第2期372-380,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61173097 61202202) 浙江省重大科技专项重大工业资助项目(2013C01112) 杭州市重大科技创新专项资助项目(20132011A16)~~
关键词 工作流调度 粒子群算法 关键路径 云计算 workflow scheduling particle swarm optimization critical paths cloud computing
  • 相关文献

参考文献16

  • 1GAREY M R, JOHNSON D S. Computers and intractability: a guide to the theory of NP-completeness[M]. San Francisco, La. , USA : Freeman, 1979. 被引量:1
  • 2TOPCUOGLU H, HARIRI S, WU M. Performance-effective and low-complexity task scheduling for heterogeneous compu- ting[J]. IEEE Transactions on Parallel and Distributed Sys- tems, 2002,13(3) : 260-274. 被引量:1
  • 3DURILLO J J, FARD H M, PRODAN R. Moheft:a multi- objective list-based method for workflow scheduling[C]//Pro- ceedings of the 2012 IEEE 4th International Conference on Cloud Computing Technology and Science(CloudCom). Wash- ington,D. C. ,USA:IEEE,2012:185-192. 被引量:1
  • 4SU S, LI J, HUANG Q, et al. Cost-efficient task scheduling for executing large programs in the cloud[J]. Parallel Compu- ting,2013,39(4) :177-188. 被引量:1
  • 5ABRISHAMIS, NAGHIBZADEH M, EPEMA D H J. Cost-driven scheduling of grid workflows using partial critical paths[J]. IEEE Transactions on Parallel and Distributed Sys- tems,2012,23(8) :1400-1414. 被引量:1
  • 6WU Z, NI Z, GU L, et al. A revised discrete particle swarm optimization for cloud workflow scheduling[C]//Proceedings of the 2010 International Conference on Computational Intelli- gence and Security. Washington, D. C. , USA: IEEE, 2010: 184-188. 被引量:1
  • 7RODRIGUEZ M A, BUYYA R. Deadline based resource pro- visioningand scheduling algorithm for scientific workflows on clouds[J]. IEEE Transactions on Cloud Computing, 2014,2 (2) :222-235. 被引量:1
  • 8TAWFEEK M, EI-SISI A, KESHK A E, et al. Cloud task scheduling based on ant colony optimization[C]//Proceedings of the 8th International Conference on Computer Engineering - Systems. Washington, D. C. , USA.- IEEE, 2013 64- 69. 被引量:1
  • 9XU Y, LI K, HU J, et al. A genetic algorithm for task sched- uling on heterogeneous computing systems using multiple pri- ority queues[J]. Information Sciences, 2014,270 (6) : 255-287. 被引量:1
  • 10PAN Q K, TASGETIREN M F, LIANG Y C. A discrete particle swarm optimization algorithm for the no-wait flow- shop scheduling problem[J]. Computers Operations Re- search, 2008,35 (9) .. 2807-2839. 被引量:1

二级参考文献11

  • 1BUYYA R,YEO C S,VENUGOPAL S,et al.Cloud computing and emerging IT platforms:vision,hype,and reality for delivering computing as the 5th utility[J].Future Generation Computer Systems,2009,25(6):599-616. 被引量:1
  • 2TOPCUOGLU H,HARIRI S,WU M Y.Performance-effective and low-complexity task scheduling for heterogeneous computing[J].IEEE Transactions on Parallel and Distributed Systems,2002,13(3):260-274. 被引量:1
  • 3HWANG J J,CHOW Y C,ANGER F D,et al.Scheduling precedence graphs in systems with interprocessor communicationtime[J].SIAM Journal on Computing,1989,18(2):244-257. 被引量:1
  • 4LIN C,LU Shiyong.Scheduling scientific workflows elastically for cloud computing[C]//Proceedings of IEEE International Conference in Cloud Computing.Washington,D.C.,USA:IEEE,2011:746-747. 被引量:1
  • 5PANDEY S,WU L,GURU S M,et al.A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments[C]//Proceedings of IEEE International Conference on Advanced Information Networking and Applications.Washington,D.C.,USA:IEEE,2010:400-407. 被引量:1
  • 6LIU Hui,XU Dong,MIAO Huaikou.Ant colony optimization based service flow scheduling with various QoS requirements in cloud computing[C]//Proceedings of the 1st ACIS International Symposium on Software and Network Engineering.Berlin,Germany:Springer-Verlag,2011:53-58. 被引量:1
  • 7MENASCE D A,CASALICCHIO E.A framework for resource allocation in grid computing[C]//Proceedings of the IEEE Computer Society's 12th Annual International Symposium on Modeling,Analysis,and Simulation of Computer and Telecommunications Systems.Washington,D.C.,USA:IEEE Computer Society,2004:259-267. 被引量:1
  • 8YU Jia,RAJKUMAR B,CHENKT.Cost-based scheduling of scientific workflow applications on utility grids[C]//Proceedings of the 1st International Conference on E-Science and Grid Computing.Washington,D.C.,USA:IEEE,2005:8-8. 被引量:1
  • 9BHARATHI S,CHERVENAK A,DEELMAN E,et al.Characterization of scientific workflows[C]//Proceedings of the 3rd Workshop on Workflowsin Support of Large Scale Science.Washington,D.C.,USA:IEEE,2008:1-10. 被引量:1
  • 10陈志刚,文一凭,康国胜.成批处理工作流动态分组调度优化方法[J].计算机集成制造系统,2012,18(8):1693-1699. 被引量:4

共引文献11

同被引文献39

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部