期刊文献+

一种用于微表情自动识别的三维卷积神经网络进化方法 被引量:7

Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition
下载PDF
导出
摘要 由于微表情持续时间短、动作幅度小,因此微表情自动识别一直是一个具有挑战性的问题。针对上述问题,提出一种用于微表情识别的三维卷积神经网络进化(Three-Dimensional Convolutional Neural Network Evolution,C3DEvol)方法。该方法使用能有效提取动态信息的三维卷积神经网络(Three-Dimensional Convolutional Neural Network,C3D)来提取微表情在时域和空域上的特征;同时使用具有全局搜索和优化能力的遗传算法对C3D的网络结构进行优化,以获取最优的C3D网络结构和避免局部优化。利用CASME2数据集在带有两块NVIDIA Titan X GPU的工作站上开展了实验,结果表明C3DEvol微表情自动识别的准确率达到63.71%,优于现有的微表情自动识别方法。 Due to the short duration of micro-expressions and the small amplitude of motion,the automatic recognition of micro-expressions is still a challenging problem.Aiming at the problems,this paper proposes a Three-Dimensional Convolutional Neural Network Evolution(C3DEvol)method for micro-expression recognition.In the C3DEvol,three-dimensional Convolutional Neural Network(C3D)which can extract dynamic information effectively is used to extract micro-expression features in time domain and space domain.At the same time,the genetic algorithm with the capabilities of global search and optimization is used to optimize the network structure of C3D in order to obtain the optimal network structure and avoid local optimization.Experiments are performed on a workstation with two NVIDIA Titan X GPUs using the CASME2 dataset.Experiments show that the accuracy of C3DEvol micro-expression automatic recognition reaches 63.71%,which is better than the existing micro-expression automatic recognition method.
作者 梁正友 何景琳 孙宇 LIANG Zheng-you;HE Jing-lin;SUN Yu(School of Computer and Electronics Information,Guangxi University,Nanning 530004,China)
出处 《计算机科学》 CSCD 北大核心 2020年第8期227-232,共6页 Computer Science
基金 国家自然科学基金(61763002)。
关键词 微表情识别 遗传算法 三维卷积神经网络 特征提取 网络结构优化 Micro-expression recognition Genetic algorithm Three-dimensional convolutional neural network Feature extraction Network structure optimization
  • 相关文献

参考文献1

二级参考文献19

  • 1方敏,王宝树.基于进化策略的多传感器雷达辐射源目标识别方法[J].控制理论与应用,2004,21(2):165-168. 被引量:2
  • 2Bengio Y, Delalleau O. On the expressive power of deep archi-tecture [M]// Algorithmic Learning Theory. Springer,2011:18-36. 被引量:1
  • 3Bengio Y. Deep Learning of representations for unsupervisedand transfer leamingCCj/ZlMLR Washington, USA, 2012; 17-36. 被引量:1
  • 4Hinton G,Salakhutdinov R. Reducing the dimensionality of datawith neural networks [J]. Science,2006,313(5786) :504-507. 被引量:1
  • 5Hinton, Salakhudinov R. Training a deep auto-encoder or a clas-sifier on MINIST digits [OL]. http://www. cs. toronto. edu/Hinton/Matlab For Science Paper, html. 被引量:1
  • 6Kantardzic M. Data Mining: Conception, Model, and Algorithm(Edition 2)[M]. Beijing:Tsinghua University press,2013. 被引量:1
  • 7Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise trai-ning of deep networks [C]//Proc of the 12th Annual Confer-ence on Neural Information Processing System. 2006; 153-160. 被引量:1
  • 8Hinton G,Osindero S,Teh Y. A fast learning algorithm for deepbelief nets[J]. Neural Computation,2006,18(7) : 1527-1554. 被引量:1
  • 9Bengio Y. Learning Deep Architectures for AI[J], Foundationsand Trends in Machine Learning,2009.2(1) : 1-127. 被引量:1
  • 10Deep Learning 和 Knowledge Graph 引爆大数据革命[OL]. ht-tp://blog. sina. com. cn/s/blog_46d0a3930101fswl. html. 被引量:1

共引文献17

同被引文献52

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部