期刊文献+

一种多策略引导的电磁场优化算法 被引量:2

Multi-strategy guided electromagnetic field optimization algorithm
下载PDF
导出
摘要 针对标准电磁场优化算法容易陷入局部极值点、收敛精度差等问题,提出了一种多策略引导的电磁场优化算法。算法中粒子受到三种不同来源的引斥力,在迭代过程中通过计算每种移动策略的临代电差、累计电差和综合电差来决定粒子的引导方式,并通过概率变异算法来避免陷入局部最优解。在经典的基准测试函数上,对新算法与其他算法的测试结果比较进行分析,结果表明该算法具有更高的求解精度和更快的计算速度。 A multi-strategy guided electromagnetic field optimization algorithm happens to aim at the problem that the standard electromagnetic field optimization algorithm is easy to fall into local extremum and poor convergence precision.In the algorithm,the particles suffer the repulsive force of three different sources.In the iterative process,calculating the generational electrical difference,the cumulative electrical difference and the integrated electrical difference of each mobile strategy,which determines the particle conduction mode and avoids falling into the trap with the probability mutation algorithm.On the classic benchmark function,analysis of the comparison between the new algorithm and other algorithms shows that the algorithm has higher accuracy and faster calculation speed.
作者 陈斌 马良 刘勇 Chen Bin;Ma Liang;Liu Yong(Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第7期2011-2015,2036,共6页 Application Research of Computers
基金 国家教育部人文社会科学研究规划基金资助项目(16YJA630037) 上海市“科技创新行动计划”软科学研究重点项目(18692110500) 上海市高原科学建设项目(第二期)。
关键词 电磁场优化算法 多策略 引斥力 最优化 electromagnetic field optimization algorithm multi-strategy repulsive force optimization
  • 相关文献

参考文献8

二级参考文献81

  • 1王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384. 被引量:123
  • 2杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,17(5):29-35. 被引量:101
  • 3Qin A K,Huang V L,Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J].{H}IEEE Transactions on Evolutionary Computation,2009,(02):398-417. 被引量:1
  • 4Wang Y,Li B,Weise T. Self-adaptive learning based particle swarm optimization[J].{H}Information Sciences,2011,(20):4515-4538. 被引量:1
  • 5Peng F,Tang K,Chen G L. Population-based algorithm portfolios for numerical optimization[J].{H}IEEE Transactions on Evolutionary Computation,2010,(05):782-800. 被引量:1
  • 6Burke E K,Hyde M R,Kendall G. Exploring hyper-heuristic methodologies with genetic programming[J].{H}COMPUTATIONAL INTELLIGENCE,2009,(03):177-201. 被引量:1
  • 7Ross P,Marfn-Blazquez J G. Constructive hyper-heuristics in class timetabling[A].New York:IEEE,2005.1493-1500. 被引量:1
  • 8Burke E K,Kendall G,Soubeiga E. A tabu-search hyperheuristic for timetabling and rostering[J].{H}JOURNAL OF HEURISTICS,2003,(06):451-470. 被引量:1
  • 9Liang J J,Suganthan P N,Deb K. Novel composition test functions for numerical global optimization[A].Pasadena:IEEE,2005.68-75. 被引量:1
  • 10Xu B,Zhuang Y,Xue Y. Self-adaptive learning based immune algorithm[J].Journal of Central South University,2012,(04):1021-1031.doi:10.1007/s11771-012-1105-3. 被引量:1

共引文献231

同被引文献20

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部