期刊文献+

MapReduce框架下基于正负关联规则的视频人物关系挖掘

Mining of video character relationship based on positive and negative association rules under MapReduce frame
下载PDF
导出
摘要 针对目前视频人物关系挖掘中关系单一的问题,提出了一种MapReduce框架下基于关联规则的视频人物关系挖掘方法。首先对预处理过的视频图像进行人脸聚类,其次引入了关系方向、关系权重、关系影响三个关系细化的概念,对所得人脸事务数据库进行了正负关联规则挖掘,最后比较了挖掘结果关系图同客观关系图在对应图节点度数上的差异。实验表明,该方法可以挖掘出客观人物关系图主要结构,相对于其他人物关系挖掘方法完成了人物关系的细化,对视频内容分析的研究具有较强的参考价值。 This paper proposed a method of video character relationship mining based on association rules under MapReduce frame aiming at the problem of single relationship in current video character relationship mining.Firstly,this method applied face clustering in the preprocessed video images.Secondly,it introduced three concepts of relational refinement,namely relational direction,relational weight and relational impact,and mined positive and negative association rules in the resulting face transaction database.Finally,this paper compared the mining result graph with the objective character relationship graph in the degree of difference among the corresponding graph nodes.Experiments show that the proposed method can extract the main structure of objective relation graph,at the same time complete the refinement of the relationship between characters compared with other video character relationship mining method.It has a strong reference value for the research of video content analysis.
作者 朱晋 怀丽波 崔荣一 王齐 Zhu Jin;Huai Libo;Cui Rongyi;Wang Qi(Intelligent Information Processing Laboratory,Dept.of Computer Science&Technology,Yanbian University,Yanji Jilin 133002,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第8期2333-2337,共5页 Application Research of Computers
基金 吉林省教育厅“十三五”科学技术研究项目(JJKH20180897KJ)。
关键词 视频人物关系 正负关联规则 人物关系细化 视频内容分析 video character relationship positive and negative association rules refinement of person relation video content analysis
  • 相关文献

参考文献9

  • 1赵洪,宣士斌.人体运动视频关键帧优化及行为识别[J].图学学报,2018,39(3):463-469. 被引量:5
  • 2高翔..基于视频深度学习的人物行为分析与社交关系识别[D].南京邮电大学,2017:
  • 3冯新杰..基于视频的社会群体人物关系发现及人物搜索[D].哈尔滨工业大学,2012:
  • 4朱书眉..基于词袋模型和关联规则的医学图像分类研究[D].南京邮电大学,2016:
  • 5朱玉全,杨鹤标.负关联规则挖掘算法研究[J].应用科学学报,2006,24(4):382-386. 被引量:5
  • 6章坚武,黄佳森,周迪.基于模糊理论与关联规则的入侵检测模型[J].电信科学,2019,35(5):59-69. 被引量:6
  • 7周旺..基于卷积神经网络的人脸年龄估计算法[D].南京大学,2017:
  • 8原琨..基于时空上下文的视频人物关系挖掘[D].哈尔滨工业大学,2010:
  • 9黄宜华主编..深入理解大数据 大数据处理与编程实践[M].北京:机械工业出版社,2014:488.

二级参考文献20

  • 1王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases.Proc of ACM SIGMOD Int Conf Management of Date[C].Washington D C,1993.207-216. 被引量:1
  • 3Agrawal R,Srikant R.Fast algorithm for mining association rules.Proc 20th Int Confon VLDB[C].Santiago,Chile,1994.487-499. 被引量:1
  • 4Han J,Kamber M.Data Mining:Concepts and Techniques[M].Beijing,High Education Press,2001. 被引量:1
  • 5Goethals B.Survey on frequent pattern mining[R].Helsinki Institute for Information Technology,Technical Report,2003. 被引量:1
  • 6Han J,et al.Mining frequent patterns without candidate generation.Proc of 2000 ACM SIGMOD International Conference on Management of Data[C].Dallas,TX,2000.1-12. 被引量:1
  • 7Savasere A,Omiecinski E,Navathe S.Mining for strong negative rules for statistically dependent items.Proc of ICDM[C].2002.442-449. 被引量:1
  • 8Wu Xindong,Zhang Chengqi,Zhang Shichao.Mining both positive and negative association rules.Proc of the 19th international conference on machinelearning[C].San Mateo,Morgan Kaufmann Publishers,2002.658-665. 被引量:1
  • 9Antonie M L,Zaiane O R.Mining positive and negative association rules:An approach for confined rules.Proc of8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 04)[C].Pisa,Italy,Springer Verlag LNCS 3202,September 20-24,2004.27-38. 被引量:1
  • 10孙淑敏,张建明,孙春梅.基于改进K-means算法的关键帧提取[J].计算机工程,2012,38(23):169-172. 被引量:9

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部