期刊文献+

一种参数优化VMD多尺度熵的轴承故障诊断新方法 被引量:19

A new fault diagnosis approach for bearing based on multi-scale entropy of the optimized VMD
原文传递
导出
摘要 现有基于变分模态分解算法(VMD)的轴承故障诊断方法,由于其参数K需要依据先验知识预先设定,缺乏对K值最优设定的理论支撑,难以保证故障特征提取及故障诊断的精确性.针对上述问题,提出一种基于参数估计优化的VMD与多尺度熵(MSE)的石化装备轴承特征提取及诊断新方法.首先,针对VMD分解参数K的难以实现最优设定问题,利用局部均值分解(LMD)自适应分解分量的频率分布特征,构建一种实现K值有效估计的方法;其次,在VMD分解的基础上,提出一种MSE和线性判别分析(LDA)协同特征提取方法,完成特征模型构建;然后,针对轴承故障特征样本过少,利用支持向量机(SVM)对提取故障特征进行识别;最后,利用石化装备实验室仿真平台的轴承故障数据进行实验,验证算法的有效性和工程实用性.对比分析表明,所提出的算法可以很好地提取故障特征且故障识别精度较高,具有较好工程操作性和扩展性. It is well known that the parameter K of variational mode decomposition(VMD)needs to be preset according to prior knowledge without theoretical support for optimal setting.Thus,for the existing fault diagnosis methods for bearing based on VMD,the correctness of characteristic extraction and accuracy of fault diagnosis are extremely difficult to be guaranteed.To solve this problem,a novel collaborative diagnosis approach of petrochemical equipment for bearing based on optimal VMD and multiscale entropy(MSE)is proposed.Firstly,because optimizing the decomposition parameter K for VMD is difficult,an effective estimation model of K is constructed according to the frequency distribution characteristics of the decomposition components of local mean decomposition(LMD).Then,a novel characteristic extraction technique collaborating MSE and linear discriminant analysis(LDA)is proposed to establish characteristic samples.Furthermore,aiming at the fault characteristic of small samples for bearing,support vector machine(SVM)is introduced to identify the fault characteristics.Finally,the bearing fault data collected from the simulation platform of the petrochemical equipment laboratory is used to verify the effectiveness and engineering practicability of the proposed approach.The comparative analysises show that the proposed algorithm can effectively diagnose faults of the bearing with good engineering operability and scalability.
作者 黄大荣 柯兰艳 林梦婷 孙国玺 HUANG Da-rong;KE Lan-yan;LIN Meng-ting;SUN Guo-xi(College of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China;Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis,Guangdong University of Petrochemical Technology,Maoming 525000,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第7期1631-1638,共8页 Control and Decision
基金 国家自然科学基金项目(61663008,61573076,61473094,61304104,61004118) 教育部留学归国人员科研启动基金项目(2015-49) 重庆市高等学校优秀人才支持计划项目(2014-18) 广东省石化装备故障诊断重点实验室开放式基金项目(GDUPKLAB201501/GDUPKLAB201604) 广东省普通高校特色创新项目(201463104) 重庆市教委科学技术研究项目(KJ1705139/KJZD-K201800701)。
关键词 轴承故障 变分模态分解算法 多尺度熵算法 线性判别分析算法 支持向量机故障特征识别 bearing faults VMD algorithm MSE algorithm LDA algorithm SVM fault characteristics recognition
  • 相关文献

参考文献5

二级参考文献50

共引文献202

同被引文献178

引证文献19

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部