期刊文献+

基于混合极限学习机的TSV缺陷检测技术 被引量:2

TSV Defect Detection Technology Based on the Hybrid Extreme Learning Machine
下载PDF
导出
摘要 随着三维集成技术的飞速发展,硅通孔(TSV)缺陷的检测问题不容忽视。提出了一种新型无损TSV缺陷检测方法,该方法采用混合极限学习机模型对TSV缺陷的S参数进行训练分类,用来预测TSV发生空洞缺陷的大小及高度、发生针孔缺陷的大小及高度及发生微衬底未对齐缺陷的偏移量。仿真结果表明,所提出的方法在TSV缺陷检测过程中可以避免对被测样品的损坏,且与原极限学习机相比,其缺陷定位准确率提高了11.51%,达到94.61%。基于混合极限学习机的TSV缺陷检测方法,既可以对不同类型的TSV缺陷进行分类,也能针对具体缺陷类型进行定位。 With the rapid development of 3 D integration technology, the problem of through silicon via(TSV) defect detection cannot be ignored. A new TSV defect non-destructive detection method was proposed. A hybrid extreme learning machine model was used to train and classify the S parameters of TSV defects to predict the size and height of the void defect and pinhole defect, and the offset of the micro substrate misalignment. The simulation results show that the proposed method can avoid the damage to the tested samples during the TSV defect detection process. Compared with the original extreme learning machine, the accuracy of the defect location is increased by 11.51% to 94.61%.The TSV defect detection method based on the hybrid extreme learning machine can classify different types of TSV defects, and locate specific defect types.
作者 陈寿宏 康怀强 侯杏娜 尚玉玲 Chen Shouhong;Kang Huaiqiang;Hou Xingna;Shang Yuling(School of Electronic Engineering and Automation,Guilin University of Elctronic Technology,Guilin 541004,China)
出处 《半导体技术》 CAS 北大核心 2020年第7期557-563,共7页 Semiconductor Technology
基金 国家自然科学基金资助项目(61661013) 广西自然科学基金资助项目(2018GXNSFAA281327)。
关键词 硅通孔(TSV)缺陷检测 机器学习 S参数 极限学习机(ELM) 粒子群优化(PSO)算法 through silicon via(TSV) defect detection machine learning S parameter extreme learning machine(ELM) particle swarm optimization(PSO) algorithm
  • 相关文献

参考文献5

二级参考文献49

  • 1K. N. TU,TIAN Tian.Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products[J].Science China(Technological Sciences),2013,56(7):1740-1748. 被引量:14
  • 2RAMM P,KLUMPP A,WEBER J,et al.3D integration technology:Status and application development[C]∥Proceedings of the ESSCIRC.Seville,Spain,2010:9-16. 被引量:1
  • 3KOYANAGI M,FUKUSHIMA T,TANAKA T.Highdensity through silicon vias for 3-D LSIs[J].Proceedings of the IEEE,2009,97(1):49-59. 被引量:1
  • 4GAGNARD X,MOURIER T.Through silicon via:From the CMOS imager sensor wafer level package to the3D integration[J].Microelectronic Engineering,2010,87(3):470-476. 被引量:1
  • 5ZHANG Y Z,DING G F,WANG H,et al.Optimization of innovative approaches to the shortening of filling times in 3D integrated through-silicon vias(TSVs)[J].Journal of Micromechanics and Microengineering,2015,25(4):045009. 被引量:1
  • 6International technology roadmap for semiconductors(2011edition)[EB/OL].[2015-06-10].http:∥www.itrs.net/Links/2011ITRS/2011Chapters/2011Interconnect.pdf. 被引量:1
  • 7LOU Y,YAN Z,ZHANG F,et al.Comparing through-silicon-via(TSV)void/pinhole defect self-test methods[J].Journal of Electronic Testing,2012,28(1):27-38. 被引量:1
  • 8HUANG L R,HUANG S Y,SUNTER S,et al.Oscillation-based prebond TSV test[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2013,32(9):1440-1444. 被引量:1
  • 9LEE HH S,CHAKRABARTY K.Test challenges for 3D integrated circuits[J].IEEE Design&Test of Computers,2009,26(5):26-35. 被引量:1
  • 10ALTMANN F,SCHMIDT C,BRANDS,et al.Failure diagnostics for 3D system integration technologies in microelectronics[J].ECS Transactions,2010,33(4):47-57. 被引量:1

共引文献12

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部