摘要
在火电厂中,风机的故障通常会引起风机振动幅值异常,因此对风机振动趋势的准确预测可以有效降低风机故障发生概率。由于原始的风机振动数据具有较强的随机性和波动性,传统预测方法很难直接进行有效预测,因此需要对原始风机振动数据进行预处理,并应用先进的机器学习算法来进一步提高风机振动预测精度。该文采用完备经验模态分解(complete ensemble empirical mode decomposition adaptive noise,CEEMDAN)对原始数据进行预处理,将原始振动数据分解为一系列固态模量(intrinsic mode function,IMF),从而降低原始振动信号的非平稳性。其次使用经过鲸鱼算法(whale optimization algorithm,WOA)优化的极限学习机(extreme learning machine,ELM)来预测所有IMF序列。最后将所有IMFS预测结果叠加得到最终预测值。为评估模型的预测性能,该研究采集某火电厂风机机组的振动数据进行多组对比试验。结果表明,该文提出的模型SSE平均降低39.58%,RMSE平均降低31.73%,验证CEEMDAN-WOA-ELM模型具有优越的数据处理和预测能力,适用于火电厂中风机振动的趋势预测。
In the thermal power plant,the failure of the fan usually causes abnormal vibration amplitude of the fan.Therefore,accurate prediction of the trend of fan vibration can effectively reduce the probability of fan failure.Due to the strong randomness and fluctuation of the original fan vibration data,traditional prediction methods are difficult to directly perform effective predictions.Therefore,it is necessary to pre-process the original fan vibration data and apply advanced machine learning algorithms to further improve the prediction of fan vibration.In this paper,complete empirical mode decomposition adaptive noise(CEEMDAN)is used to preprocess the original data and decompose the original vibration data into a series of intrinsic mode functions(IMF),thereby reducing the non-stabilaty of original vibration signal.Non-stationarity.Secondly,an extreme learning machine(ELM)optimized by a whale optimization algorithm(WOA)is used to predict all IMF sequences.Finally,all IMFS prediction results are superimposed to obtain the final prediction value.In order to evaluate the predictive performance of the model,this study collected vibration data from a fan plant in a thermal power plant and conducted multiple sets of comparative tests.The results show that the model proposed in this paper has an average reduction of 39.58%and an average reduction of RMSE of 31.73%,which verifies that the CEEMDAN-WOA-ELM model has superior data processing and prediction capabilities and is suitable for the prediction of fan vibration trends in thermal power plants.
作者
田宏伟
李志鹏
王煜伟
孙钢虎
杨沛豪
TIAN Hongwei;LI Zhipeng;WANG Yuwei;SUN Ganghu;YANG Peihao(National Energy Group Jianbi Power Plant,Zhenjiang 212006,China;Xi’an Thermal Power Research Institute Co.,Ltd.,Xi’an 710000,China)
出处
《中国测试》
CAS
北大核心
2020年第7期146-152,共7页
China Measurement & Test
基金
国家能源江苏公司科技项目(JSKJ-2019-01)。
关键词
振动
完备经验模态分解
极限学习机
预测
vibration
complete empirical mode decomposition
extreme learning machine
prediction