期刊文献+

基于人工智能的足迹识别与特征提取 被引量:6

Footprint Recognition and Features Extraction Based on Artificial Intelligence
下载PDF
导出
摘要 针对战场感知及侦破现场中传统人工主观经验检验与识别模式误差较大的问题,提出了一种基于人工智能的足迹识别与特征提取方法。采用三维形貌重构系统进行足迹图像采集,并将数字图像处理算法与传统足迹检验法结合,提取足迹的区域关系特征和形状长度特征,进而采用支持向量机的模式识别方法对提取的特征进行立体足迹身份鉴别对比实验。实验结果表明,所提方法准确率超过人工鉴别准确率,达到99.1%,可应用于战场感知及侦破现场足迹准确检测与识别,也可推广应用于人体身份鉴别的相关领域。 For the problem that the traditional way of recognition based on experiences has a big deviation between recognition patterns in battleground awareness and crime scene investigation,a footprint recognition and feature extraction method based on artificial intelligence is proposed.It uses a three-dimensional(3D)reconstruction system to collect footprint images,then combines digital image processing algorithms with traditional footprint inspection methods to extract regional relationship features and shape-length features of collected footprints.Further,it carries out a 3D footprint identification comparison experiment on the extracted features by using the pattern recognition method based on support vector machine.The results indicate that the accuracy rate of the proposed method reaches 99.1%,which exceeds the accuracy rate of traditional way of recognition.This method can be applied not only in battlefield awareness and accurate detection and identification of footprints on crime scene,but also in human body identification in related fields.
作者 高毅 穆治亚 张群兴 仲元昌 GAO Yi;MU Zhiya;ZHANG Qunxing;ZHONG Yuanchang(College of Criminal Science and Technology,Criminal Investigation Police University of China,Shenyang 110035,China;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;Key Laboratory of Sichuan Higher Education Criminal Inspection,Luzhou 646000,China;The 7th Military Representative Office of Equipment Development Department in Chongqing Region,Chongqing 400060,China;School of Electrical Engineering,Chongqing University,Chongqing 400044,China;State Key Laboratory of Power Transmission Equipment&System Security and New Technology,Chongqing 400044,China)
出处 《电讯技术》 北大核心 2020年第7期739-745,共7页 Telecommunication Engineering
基金 辽宁省自然科学基金引导计划项目(20180550153) 中央高校基本科研业务费(2019CDCGTX302,2020CDCGTX055) 证据科学教育部重点实验室2019年开放基金项目(2019KFKH02) 刑事检验四川高校重点实验室开放课题(2018YB03)。
关键词 足迹识别 人工智能 模式识别 三维形貌重构 数字图像处理 footprint recognition artificial intelligence pattern recognition 3D reconstruction digital image processing
  • 相关文献

参考文献5

二级参考文献22

  • 1于烨,陆建华,郑君里.一种新的彩色图像边缘检测算法[J].清华大学学报(自然科学版),2005,45(10):1339-1343. 被引量:30
  • 2冯晋臣等.模糊模式识别[M]河北科学技术出版社,1992. 被引量:1
  • 3王宏禹.现代谱估计[M]东南大学出版社,1990. 被引量:1
  • 4Fukunaga K, Hostetler I.. The Estimation of The Gradient of A Density Function with Application in Pattern Recognition[J]. IEEE Trans on Information Theory, 1975,21 ( 1 ) : 32 40. 被引量:1
  • 5Comaniciu D, Meer P. Mean Shift Arobust Application toward Feature Space Analysis[J]. IEEE Transactions on Pattern Ana- lysis and Machine Intelligence, 2002,24 (5) : 603-619. 被引量:1
  • 6Comaniciu D, Ramesh V, Meet P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 2003,25 (5) : 564-575. 被引量:1
  • 7Bousetouane F,Dib L,Snoussi H. Improved mean shift integra- ting texture and color features for robust real time object tra- cking[J]. The Visual Computer, 2013,29(3) : 155-170. 被引量:1
  • 8Comanieiu D, Ramesh V, Meer P. Real-Time Tracking of Non- Rigid Objects using Mean Shift[C]//IEEE Computer Vision and Pattern Recognition. 2000:142-149. 被引量:1
  • 9颜佳,吴敏渊,陈淑珍,张青林.应用Mean Shift和分块的抗遮挡跟踪[J].光学精密工程,2010,18(6):1413-1419. 被引量:28
  • 10王宇雄,章毓晋,王晓华.4-D尺度空间中基于Mean-Shift的目标跟踪[J].电子与信息学报,2010,32(7):1626-1632. 被引量:8

共引文献11

同被引文献77

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部