摘要
要扩大插值型无单元伽辽金比例边界法(IEFG-SBM)的应用范围,对其进行了探究。改进的插值型移动最小二乘法和控制方程是IEFG-SBM的理论基础,该方法仅需在计算域的环向进行节点离散,空间维数降低了一维。采用改进的插值型移动最小二乘法构造的试函数能够满足插值性质,方便本质边界条件的直接施加。为了更好发挥IEFG-SBM和有限元法各自的优势,提出了将IEFG-SBM与有限元法进行耦合并用于解决弹性与压电材料断裂问题。但至今,应用IEFG-SBM求解的都是线性问题,非线性还未涉及。未来将扩大IEFG-SBM的应用范围,以期为计算方法的发展带来更为广阔的前景。
In order to enlarge the application scope of interpolation-free galerkin proportional boundary method,the research is done.Improved interpolation-free movement least square method and governing equation is the theoretical base of IEFG-SBM.Through the method,node disperse needs to be done when computing the circumferential direction of the domain,and the space dimensionality reduces by one dimension.The function of improved interpolation-free movement least square method can satisfy the interpolation characterization,and facility the direct application of essential boundary condition.In order to better play the advantages of IEFG-SBM and limited finite element method,the paper proposes to combine IEFG-SBM with finite element method to solve the resilience and fracture of piezoelectric materials.Nowadays,the application of IEFG-SBM can only be used in linear problems,but not in nonlinearity.It is suggested to enlarge the application scale of IEFG-SBM,in order to provide wide prospect for computing method development.
作者
叶文华
王娟
Ye Wenhua;Wang Juan(Architectural Engineering Institute, Xinyu College, Xinyu 338004, China)
出处
《黑龙江科学》
2020年第14期20-21,共2页
Heilongjiang Science
基金
新余学院大学生创新创业训练计划项目(DC201801155)
新余学院校级科研项目(XJZD1905)。
关键词
插值型无单元伽辽金比例边界法
理论
研究进展
Interpolation-free galerkin proportional boundary method
Theory
Research progress