期刊文献+

无网格Shepard-最小二乘法弹塑性分析研究

Elastoplastic Analysis of Meshless Shepard-least Square Method
下载PDF
导出
摘要 采用一种新的无网格Shepard-最小二乘插值技术来进行二维弹塑性问题的分析求解,以克服原有无网格方法在该类问题分析中诸如本质边界条件施加困难、形函数的计算和求导复杂的缺点。该插值函数在实现了滑动最小二乘(MLS)插值函数所不具备的delta属性的同时也克服了滑动最小二乘(MLS)形函数求导计算代价大的问题;验证结果表明,该插值函数计算及求导过程远比MLS插值形函数简单。其后利用该新型插值函数进行了增量格式的塑性分析;数值算例的结果表明了本文方法用于弹塑性分析的正确性和有效性。 A new meshless Shepard-least-squares interpolation technique is used to analyze and solve two-dimensional elastoplastic problems in order to overcome the shortcomings of the original meshless method in the analysis of such problems such as difficulty in applying essential boundary conditions,complexity in calculation of shape function and derivation.This interpolation function achieves the delta property that is not available in the sliding least squares(MLS)interpolation function,and also overcomes the problem of the derivation calculation of the sliding least squares(MLS)shape function.The result shows that the calculation and derivation process is much simpler than the MLS interpolation shape function.Based on the new interpolation function,the plasticity analysis in incremental format was carried out.The results of numerical examples show the correctness and effectiveness of the method in this paper.
作者 苏锋 SU Feng(PowerChina Northwest Engineering Corporation Limited,Xi'an 710065,China)
出处 《西北水电》 2019年第6期118-122,共5页 Northwest Hydropower
基金 国家自然科学基金项目(10972161) 教育部科学技术研究重点项目(107041) 上海市重点学科建设项目(B308)
关键词 弹塑性 无网格 最小二乘 Shepard函数 elastoplasticity meshless least squares Shepard function
  • 相关文献

参考文献7

二级参考文献150

共引文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部