期刊文献+

一种基于PNN的点阵喷码字符识别方法 被引量:2

An Ink-jetted Code Character Recognition Method Based on Probabilistic Neural Network
下载PDF
导出
摘要 在点阵喷码字符智能识别问题的研究中,由于点阵喷码字符是喷印在背景复杂且含有其他标准字符的产品外包装上,且点阵喷码字符的字体大小、喷墨量及光照影响的变化,使得准确定位和识别点阵喷码字符均有一定的难度。本文针对上述难点提出基于概率神经网络(PNN)的点阵喷码字符识别方法。首先,将原始图像转换成灰度图像并进行高斯滤波预处理。然后,利用改进的FAST角点检测算法快速定位喷码字符。在特征提取环节,本文提取待识别点阵喷码字符的HOG特征和网格特征,并将这2种特征进行联合。最后,将联合后的字符特征输入到PNN,建立分类模型,利用训练好的分类模型识别出点阵喷码字符。实验结果表明:本文提出的点阵喷码字符定位方法准确率高、速度快,且采用PNN建立的分类模型对受光照影响、字体不一的点阵喷码字符具有一定的适应性,识别准确率为97.1%,可满足工业中点阵喷码字符识别的应用场合。 In the study of the intelligent ink-jetted code character recognition,it is difficult to locate and recognize the ink-jetted code characters accurately since the ink-jetted code characters are printed on the package of the product with complicated background and other standard characters.During the printing process,the font size of the ink-jetted code characters,the amount of the ink ejection and the influence of illumination are different.In view of the above difficulties,an ink-jetted code character recognition method based on Probabilistic Neural Network(PNN)is proposed in this paper.Firstly,the original image is converted to a grayscale image,and the Gaussian filter is used to remove the noise.Secondly,the improved FAST corner detection algorithm is used to quickly locate the ink-jetted code character.The HOG features and the mesh features of the ink-jetted code characters are extracted,and the two features are merged.Finally,the features are sent to the PNN to establish a classification model,which are used to recognize ink-jetted code characters.The experimental results show that the proposed method is very fast and the accuracy of location is high.Compared with BP neural network,when the characters are subject to different light and have different fonts,the recognition accuracy of the model trained by PNN is improved.
作者 马玲 罗晓曙 蒋品群 MA Ling;LUO Xiaoshu;JIANG Pinqun(College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2020年第4期32-41,共10页 Journal of Guangxi Normal University:Natural Science Edition
基金 广西科技重大专项(AA18118004)。
关键词 FAST角点检测算法 概率神经网络(PNN) 喷码字符识别 字符定位 特征提取 FAST corner detection algorithm probabilistic neural network(PNN) ink-jetted code character recognition character location feature extraction
  • 相关文献

参考文献14

二级参考文献73

共引文献94

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部