期刊文献+

基于模板匹配和支持向量机的点阵字符识别研究 被引量:18

Research on Dot Matrix Character Recognition Based on Template Matching and Support Vector Machine
下载PDF
导出
摘要 食品、药品包装上的点阵字符信息一般包含生产日期和其他重要信息。针对目前单一的点阵字符识别方法准确率不高,且对点阵字符在复杂环境下(既包含点阵字符又包含连续字符)字符定位准确性低的问题,提出了一种基于模板匹配和支持向量机(Support Vector Machine,SVM)的组合点阵字符识别方法。该方法利用点阵字符的离散性质来准确定位点阵字符,然后分别通过基于灰度的模板匹配和基于特征的模板匹配方法得到两个判定结果。若判定结果相同,则识别出字符;若判定结果相异,将这两个结果送给SVM进行识别,得出识别结果。实验结果表明,该方法在点阵字符的定位准确性和识别率方面都优于传统字符识别方法,且识别鲁棒性较好,字符识别率达到96.10%。 The dot matrix character information on food and pharmaceutical packages generally includes its date of manufacture and other important information.At present,the single dot matrix character recognition method has low accuracy.In a complex environment(including both dot matrix characters and continuous characters),the dot matrix character has a low accuracy of character localization.To this end,template matching combined with Support Vector Machine(SVM)is proposed.Firstly,dot characters are accurately located by using the discrete properties of dot matrix characters.Then two decision results are respectively obtained by gray-based template matching and feature-based template matching methods.If the judgment result is the same,the character is recognized.If the judgment result is different,the two results are sent to the SVM for recognition.Finally,the recognition result is obtained.The experimental results show that the proposed method is superior to the traditional character recognition method in terms of location accuracy and recognition accuracy.The robustness is good,and the character recognition rate reaches 96.10%.
作者 马玲 罗晓曙 蒋品群 MA Ling;LUO Xiaoshu;JIANG Pinqun(College of Electronic Engineering,Guangxi Normal University,Guilin,Guangxi 541004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第4期134-139,共6页 Computer Engineering and Applications
基金 广西科技重大专项(No.桂科AA18118004)
关键词 点阵字符 支持向量机(SVM) 模板匹配 点阵字符识别 dot matrix character Support Vector Machine(SVM) template matching dot matrix character recognition
  • 相关文献

参考文献8

二级参考文献52

  • 1赵烨,王明磊,李新友.OCR在大数据量文档处理系统中的应用[J].计算机应用,2000,20(S1). 被引量:1
  • 2朱正礼.基于三层BP神经网络的字符识别系统的实现[J].现代计算机,2006,12(10):93-95. 被引量:10
  • 3业宁,王迪,窦立君.信息熵与支持向量的关系[J].广西师范大学学报(自然科学版),2006,24(4):127-130. 被引量:10
  • 4施建宇,潘泉,张绍武,邵壮超,姜涛.基于多特征融合的蛋白质折叠子预测[J].北京生物医学工程,2006,25(5):482-485. 被引量:2
  • 5Vapnik V N.The nature of statistical learning theory[M].New York: Springer Verlag, 2000 : 138-167. 被引量:1
  • 6Kom F,Muthukrishnan S.Influence sets based on reverse nearest neighbor queries[C]//Chen W D, Jeffrey F N, Philip A B. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA: 2000.New York, NY, USA: ACM Press, 2000 : 201-212. 被引量:1
  • 7Stanoi I,Agrawal D,Abbadi A E.Reverse nearest neighbor queries for dynamic data bases[C]//Chen W D, Jeffrey F N,Philip A B.Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000.New York,NY,USA:ACM Press,2000:44-53. 被引量:1
  • 8Yang C, Lin K I.An index structure for efficient reverse nearest neighbor queries[C]//George K.Proceedings of the IEEE International Conference on Data Engineering, Heidelberg, Germany,2001.Washington:IEEE Computer Society,2001:485-492. 被引量:1
  • 9Richard O D,Peter E H,David G S.Pattem classification[M].李宏东,姚天翔,译.北京:机械工业出版社,2003:151-158. 被引量:1
  • 10Platt J C.Probabilistic outputs for support vector machines and comparison to regularized likelihood methods[C]//Advances in Large Margin Classifiers.Cambridge, MA: MIT Press, 2000: 61-74. 被引量:1

共引文献88

同被引文献141

引证文献18

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部