摘要
对时间尺度上非完整系统相对于非惯性系的Lie对称性及守恒量进行研究.基于Hamilton原理和Dubois-Reymond引理推导出该系统的运动微分方程;再根据无限小变换不变性得出时间尺度上相对于非惯性系的Lie对称性确定方程和限制方程,进一步引出结构方程以及相应守恒量;最后,通过算例对结果进行应用.
The Lie symmetries and conserved quantities of nonholonomic systems relative to non-inertial systems on time scale are studied.Based on Hamilton principle and Dubois reymond lemma,the differential equations of motion of the system are derived.Then,according to the invariance of infinitesimal transformation,the Lie symmetry determining equation and limiting equation of relative to non-inertial system on time scale are obtained,and the structural equation and the corresponding conserved quantity are further derived.Finally,the results are applied by examples.
作者
彭姣
朱建青
PENG Jiao;ZHU Jianqing(College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第3期368-372,共5页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(11572212)。
关键词
时间尺度
非完整系统
非惯性系
LIE对称性
守恒量
time scales
nonholonomic systems
non-inertial systems
Lie symmetry
conserved quantity