期刊文献+

时间尺度上非完整系统的Noether准对称性与守恒量

Noether quasi-symmetry and conservation laws on time scales for nonholonomic systems
下载PDF
导出
摘要 提出并研究时间尺度上非完整系统的Noether准对称性与守恒量.首先,将时间尺度上非完整系统的运动微分方程化为时间尺度上一般完整系统的Lagrange方程,在Lagrange框架下建立时间尺度上Noether定理,给出时间尺度上Noether守恒量;其次将时间尺度上非完整系统的运动微分方程化为时间尺度上相空间中一般完整系统的Hamilton方程,在Hamilton框架下建立时间尺度上Noether定理,给出时间尺度上Noether守恒量;再次,将时间尺度上非完整系统的运动微分方程化为时间尺度上广义Birkhoff方程,在Birkhoff框架下依据时间尺度上Noether准对称性的定义,建立时间尺度上Noether定理和广义Noether等式,给出时间尺度上Noether守恒量.最后,举例说明结果的应用. The Noether quasi-symmetry and conservation laws on time scales for nonholonomic systems are proposed and studied.Firstly,the differential equations of motion for nonholonomic dynamical system are transformed into the generalized Birkhoff’s equations on time scales.Under the Birkhoffian framework,the Noether theories and the generalized Noether identities on time scales are established,and the Noether conservation laws on time scales are obtained,which based on the definition of Noether quasi-symmetry.Secondly,the nonholonomic dynamical equations are transformed into the Lagrange equations on time scales for general holonomic system.Under the Lagrangian framework,the Noether theories on time scales are established,and the Noether conservation laws on time scales are obtained.Thirdly,the nonholonomic dynamical equations are transformed into the Hamilton equations on time scales for general holonomic system in phase space.Under the Hamiltonian framework,the Noether theories on time scales are established,and the Noether conservation laws on time scales are obtained.Finally,several examples are given to illustrate the applications of the results.
作者 金世欣 李莉 李彦敏 JIN Shixin;LI Li;LI Yanmin(School of Mathematics and Statistics,Shangqiu Normal University,Shangqiu 476000,China;School of Physics and Information Engineering,Shangqiu Normal University,Shangqiu 476000,China)
出处 《商丘师范学院学报》 CAS 2023年第9期1-7,共7页 Journal of Shangqiu Normal University
基金 国家自然科学基金(11572212,12102241) 河南省高等学校重点科研基金(20A130003)
关键词 非完整系统 Noether准对称性 守恒量 时间尺度 nonholonomic system Noether quasi-symmetry conservation law time scales
  • 相关文献

参考文献12

二级参考文献47

  • 1FU JingLi1,CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Mechanics,Shanghai University,Shanghai 200072,China,3 Faculty of Mechanical-Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1687-1698. 被引量:9
  • 2FU JingLi1, CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China,2 Department of Mechanics, Shanghai University, Shanghai 200072, China,3 Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):545-554. 被引量:11
  • 3葛伟宽,张毅.变质量完整力学系统的Hojman守恒量[J].力学季刊,2004,25(4):573-576. 被引量:2
  • 4BOHNER M,PETERSON A.Dynamic equations on time scales:an introduction with applications[M].Boston:Birkhauser,2001. 被引量:1
  • 5BOHNER M,PETERSON A.Advances in dynamic equations on time scales[M].Boston:Birkhauser52003. 被引量:1
  • 6AGARWAL R,BOHNER M,O'REGAN D,et al.Dynamic equations on time scales:a survey[J].Journal of Computational and Applied Mathematics,2002,141(1):1-26. 被引量:1
  • 7BOHNER M,HUDSON T.Euler-type boundary value problems in quantum calculus[J].International Journal of Applied Mathematics & Statistics,2007,9(J07):19-23. 被引量:1
  • 8GRAVAGNE I A, DAVIS J M,DACUNHA J J,et al.Bandwidth reduction for controller area networks using adaptive sampling[C]// Proceedings of the 2004 IEEE International Conference on Robotics & Automation,New Orleans,LA,April 2004:5250-5255. 被引量:1
  • 9MARKS R J,GRAVAGNE I A,DAVIS J M,et al.Nonregressivity in switched linear circuits and mechanical systems[J].Mathematical and Computer Modelling,2006,43(11-12):1383-1392. 被引量:1
  • 10ATICI F M,BILES D C,LEBEDINSKY A.An application of time scales to economics[J].Mathematical and Computer Modelling,2006,43(7-8):718-726. 被引量:1

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部