期刊文献+

基于改进的粒子群优化BP神经网络浙江电能替代潜力预测模型 被引量:8

Zhejiang Province Electric Power Substitution Potential Prediction Model Based on Improved Particle Swarm Optimization BP Neural Network
下载PDF
导出
摘要 近年来,中国煤炭等化石能源占终端能源消费的比例偏高,引起了严重的环境污染和能源资源的浪费,为了实现经济社会的绿色、可持续发展,中国提出了在终端能源消费环节实施电能替代的发展战略。因此,为了更精确地对电能替代潜力预测,基于改进的GRA-IPSO-BP模型,基于电能替代潜力影响因素的量化指标,构建了基于改进的GRA-IPSO-BP电能替代潜力预测模型。以浙江地区为例,拟合浙江地区电能替代电量的历史变化规律,并对浙江地区未来电能替代电量进行预测,研究方法有助于判断电能替代发展水平,有助于电能替代工作的推进。 In recent years,China s coal and other fossil energy accounts for a high proportion of terminal energy consumption,causing serious environmental pollution and waste of energy resources.In order to achieve green and sustainable development of the economy and society,China has proposed to implement energy in the terminal energy consumption.Alternative development strategy.Therefore,based on the improved GRA-IPSO-BP model,based on the quantitative indicators of the factors affecting the potential of electric energy replacement,an improved GRA-IPSO-BP alternative energy potential prediction model is constructed.Taking Zhejiang area as an example,the historical change law of electric energy substitution in Zhejiang area was fitted,and the future electric energy substitution in Zhejiang area was predicted.The research method is helpful to judge the level of electric energy replacement development and contribute to the advancement of electric energy substitution work.
作者 李昌祖 牛东晓 张欣岩 苗博 LI Chang-zu;NIU Dong-xiao;ZHANG Xin-yan;MIAO Bo(School of Economics and Management,North China Electric Power University,Beijing 102206,China;China Electric Power Research Institute Co.,Ltd.,Beijing 100192,China)
出处 《科学技术与工程》 北大核心 2020年第13期5173-5179,共7页 Science Technology and Engineering
基金 基于电能服务管理平台的电能替代效果提升关键技术研究及系统研发应用(SGZJ0000KXJS1800384)。
关键词 粒子群优化 神经网络 浙江 电能替代 particle swarm optimization back propagation Zhejiang electric energy replacement
  • 相关文献

参考文献15

二级参考文献88

共引文献114

同被引文献95

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部