摘要
Preformed albumin corona of albumin-nonselective nanoparticles(NPs)is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration.However,very few studies have concerned the preformed albumin corona of albumin-selective NPs.Herein,we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate(SA)onto PLGA NPs(SP NPs)surface,taking albuminnonselective PLGA NPs as control.PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm.The corresponding albumin-coating PLGA NPs(PLGA@BSA NPs)and albumin-coating SP NPs(SP@BSA NPs)were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution,respectively.The impact of albumin corona on particle characteristics,stability,photothermal effect,cytotoxicity,cell uptake,spheroid penetration and pharmacokinetics was investigated.In line with previous findings of preformed albumin coating,PLGA@BSA NPs exhibited higher stability,cytotoxicity,cell internalization and spheroid penetration performances in vitro,and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs,but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs.Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.
Preformed albumin corona of albumin-nonselective nanoparticles(NPs) is widely exploited to inhibit the unavoidable protein adsorption upon intravenous administration. However,very few studies have concerned the preformed albumin corona of albumin-selective NPs.Herein, we report a novel type of albumin-selective NPs by decorating 6-maleimidocaproyl polyethylene glycol stearate(SA) onto PLGA NPs(SP NPs) surface, taking albuminnonselective PLGA NPs as control. PLGA NPs and SP NPs were prepared by emulsion-solvent evaporation method and the resultant NPs were in spherical shape with an average diameter around 180 nm. The corresponding albumin-coating PLGA NPs(PLGA@BSA NPs) and albumin-coating SP NPs(SP@BSA NPs) were formulated by incubating SP NPs or PLGA NPs with bovine serum albumin solution, respectively. The impact of albumin corona on particle characteristics, stability, photothermal effect, cytotoxicity, cell uptake, spheroid penetration and pharmacokinetics was investigated. In line with previous findings of preformed albumin coating, PLGA@BSA NPs exhibited higher stability, cytotoxicity, cell internalization and spheroid penetration performances in vitro, and longer blood circulation time in vivo than those of albumin-nonselective PLGA NPs, but albumin-selective SP NPs is capable of achieving a comparable in vitro and in vivo performances with both SP@BSA NPs and PLGA@BSA NPs. Our results demonstrate that SA decorated albumin-selective NPs pave a versatile avenue for optimizing nanoparticulate delivery without preformed albumin corona.
基金
financially supported by the National Basic Research Program of China(973 Program,No.2015CB932100)
National Natural Science Foundation of China(No.81703451,81573371,81473164)。