期刊文献+

Sphere-forming corneal cells repopulate dystrophic keratoconic stroma:Implications for potential therapy 被引量:2

Sphere-forming corneal cells repopulate dystrophic keratoconic stroma:Implications for potential therapy
下载PDF
导出
摘要 BACKGROUND Keratoconus is a degenerative corneal disease characterised by aberrant cell behaviour and loss of matrix that can result in vision loss.Cells extracted from peripheral corneas can form stem cell-enriched spheres,which have shown the potential to repopulate the normal peripheral corneal stroma in vitro upon sphere implantation but have not been previously studied in keratoconic tissue.AIM To investigate the therapeutic potential of stem cell-enriched spheres formed from extracted peripheral human corneal cells when introduced to keratoconic tissue.METHODS Stem cell-enriched spheres were formed from extracts of normal cadaveric human peripheral corneal cells.These spheres were implanted into incisions created in full thickness and onto the surface of 10μm thin sections of keratoconic and normal stromal tissues in vitro.Tissue sections were used to maximise use of limited keratoconic tissue available for research.Living cells were stained with Calcein-AM and visualised with stereo and fluorescence microscopy to assess survival and behaviours between the time of implantation day 0 and 14 d(D14)from implantation.Sphere cells in implanted tissues were characterised for stem cell and differentiation markers using immunohistochemistry and droplet digital PCR to assess the potential implications of these characteristics in the use of spheres in keratoconus treatment.RESULTS Spheres were successfully implanted into full-thickness central corneal tissue and onto the surface of 10μm thin en face tissue sections.No observable differences were seen in sphere migration,proliferation or differentiation in keratoconic tissue compared to normal between day 0 and D14.Spheres stained positively with Calcein-AM up to D14.Cell migration increased from day 0 to D14,occurring radially in three dimensions from the sphere and in alignment with tissue edges.Cell proliferation marker,EdU,was detected at day 10.Implanted spheres stained positively for putative stem cell markersΔNp63αand ABCB5,while ABCG2,ABCB5,ΔNp63 and p63� BACKGROUND Keratoconus is a degenerative corneal disease characterised by aberrant cell behaviour and loss of matrix that can result in vision loss.Cells extracted from peripheral corneas can form stem cell-enriched spheres,which have shown the potential to repopulate the normal peripheral corneal stroma in vitro upon sphere implantation but have not been previously studied in keratoconic tissue.AIM To investigate the therapeutic potential of stem cell-enriched spheres formed from extracted peripheral human corneal cells when introduced to keratoconic tissue.METHODS Stem cell-enriched spheres were formed from extracts of normal cadaveric human peripheral corneal cells.These spheres were implanted into incisions created in full thickness and onto the surface of 10 μm thin sections of keratoconic and normal stromal tissues in vitro.Tissue sections were used to maximise use of limited keratoconic tissue available for research.Living cells were stained with Calcein-AM and visualised with stereo and fluorescence microscopy to assess survival and behaviours between the time of implantation day 0 and 14 d(D14)from implantation.Sphere cells in implanted tissues were characterised for stem cell and differentiation markers using immunohistochemistry and droplet digital PCR to assess the potential implications of these characteristics in the use of spheres in keratoconus treatment.RESULTS Spheres were successfully implanted into full-thickness central corneal tissue and onto the surface of 10 μm thin en face tissue sections.No observable differences were seen in sphere migration,proliferation or differentiation in keratoconic tissue compared to normal between day 0 and D14.Spheres stained positively with Calcein-AM up to D14.Cell migration increased from day 0 to D14,occurring radially in three dimensions from the sphere and in alignment with tissue edges.Cell proliferation marker,Ed U,was detected at day 10.Implanted spheres stained positively for putative stem cell markers ?Np63α and ABCB5,while ABCG2,ABCB5,?Np63 and p
出处 《World Journal of Stem Cells》 SCIE 2020年第1期35-54,共20页 世界干细胞杂志(英文版)(电子版)
基金 Supported by Save Sight Society of New Zealand,No.37116543 New Zealand Wound Care Society,No.3713325 John Hamel MacGregor Trust
关键词 KERATOCONUS Cell culture IMMUNOHISTOCHEMISTRY Quantitative PCR Digital PCR SPHEROID Holoclone NEUROSPHERE Regeneration Keratoconus Cell culture Immunohistochemistry Quantitative PCR Digital PCR Spheroid Holoclone Neurosphere Regeneration
  • 相关文献

参考文献1

共引文献57

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部