期刊文献+

基于粒子群优化算法的非线性系统辨识 被引量:7

Nonlinear system identification based on particle swarm optimization
原文传递
导出
摘要 针对连续非线性系统中单输入单输出Hammerstein模型,由于传统辨识方法对Hammerstein模型中非线性部分具有不易辨识的缺陷,造成辨识精度低,辨识效果差等问题。为此,采用粒子群优化算法对非线性系统进行辨识的方法,将参数辨识问题转换为参数空间上的函数优化问题。为了进一步增强粒子群优化算法的辨识性能,提出采用迭代粒子群对整个参数空间进行搜索得到系统参数的最优估计。通过MATLAB软件进行仿真,仿真实验结果证明:该方法收敛速度较快,辨识得到的参数精度较高。该方法与最小二乘方法相比,计算量小,过程简单,不用计算多重积分,辨识速度较快,辨识精度高。 For the Hammerstein model with single input and single output in the continuous nonlinear system,the traditional identification method has the defect of being difficult to identify the nonlinear part of the Hammerstein model,resulting in low identification accuracy and poor identification effect.Therefore,the problem of parameter identification is transformed into the problem of function optimization in parameter space by using particle swarm optimization to identify nonlinear systems.In order to further enhance the identification performance of PSO,an iterative PSO is proposed to search the whole parameter space to obtain the optimal estimation of system parameters.MATLAB software is used for simulation,and the simulation results prove that the method has a fast convergence speed and high parameter accuracy.Compared with the least square method,this method has the advantages of small computation amount,simple process,no need to calculate multiple integrals,fast identification speed and high identification accuracy.
作者 王芷馨 王冬青 韩增亮 许崇立 WANG Zhixin;WANG Dongqing;HAN Zengliang;XU Chongli(School of Automation,Qingdao University,Qingdao Shandong 266071,China)
出处 《自动化与仪器仪表》 2020年第5期8-12,共5页 Automation & Instrumentation
基金 国家自然科学基金资助项目“复杂网络拓扑与参数的辨识”(No.61573295) 国家自然科学基金资助项目“基于数据特征的多模态过程辨识建模方法”(No.61873138)。
关键词 连续非线性 HAMMERSTEIN模型 最小二乘法 粒子群优化算法 continuous nonlinear hammerstein model least square method particle swarm optimization
  • 相关文献

参考文献5

二级参考文献71

  • 1李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 2张燕,汪镭,康琦,吴启迪.微粒群优化算法及其改进形式综述[J].计算机工程与应用,2005,41(2):1-3. 被引量:30
  • 3李宁,付国江,库少平,陈明俊.粒子群优化算法的发展与展望[J].武汉理工大学学报(信息与管理工程版),2005,27(2):26-29. 被引量:28
  • 4[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001. 被引量:1
  • 5[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12. 被引量:1
  • 6[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996. 被引量:1
  • 7[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948. 被引量:1
  • 8[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997. 被引量:1
  • 9[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995. 被引量:1
  • 10[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998. 被引量:1

共引文献584

同被引文献64

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部